Студопедия — ГОУ ВПО. В процессе обучения химии используются следующие таблицы постоянного экспонирования: «Периодическая система химиче­ских элементов Д.И
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГОУ ВПО. В процессе обучения химии используются следующие таблицы постоянного экспонирования: «Периодическая система химиче­ских элементов Д.И

В процессе обучения химии используются следующие таблицы постоянного экспонирования: «Периодическая система химиче­ских элементов Д.И. Менделеева», «Таблица растворимости кис­лот, оснований и солей», «Электрохимический ряд напряжений металлов», «Круговорот веществ в природе» и др.

Для организации самостоятельной работы обучающихся на уро­ках используют разнообразные дидактические материалы: отдельные рабочие листы — инструкции, карточки с заданиями разной степени трудности для изучения но­вого материала, самопроверки и контроля знаний учащихся.

Для обеспечения безопасного труда кабинете химии имеется:

· противопожарный инвентарь

· аптечку с набором медикамен­тов и перевязочных средств;

· инструкцию по правилам безопасности труда для обучающих­ся

· журнал регистрации инструктажа по правилам безопас­ности труда.

 

ГОУ ВПО

ДВГУПС

 


Кафедра “Физика”

 

Лабораторная работа
На тему: “Изучение динамики поступательного движения”

 

21040165 02М 911

Шифр Номер работы Группа

 


Выполнил

Черных Д. С.

Проверил:
Старший преподаватель
кафедры “Оптические
системы связи”

Бодров Е. А.


Хабаровск 2006 г.

Цель работы:

Определение силы упругости подвеса; определение средней силы удара.

Приборы и оборудование:

Прибор для исследования соударений, вольтметр, устройство для измерения времени соударения, штангенциркуль.

Краткая теория:

Основными динамическими характеристиками поступательного движения тел являются: масса, сила и импульс тела.

Масса тела – физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Сила – это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого, тело приобретает тело приобретает ускорение или изменяет свою форму.

Импульс тела (количество движения) – векторная величина, численно равная произведению массы тела на его скорость, и имеющая направление скорости.

Связь между этими характеристиками описывается законами Ньютона. В классической механике считается, что масса тела постоянна, поэтому при постоянной скорости импульс тела также постоянен. Сохранение скорости движения или состояния покоя вытекает из первого закона Ньютона: всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, если действие на него со стороны других тел скомпенсировано, т.е. равнодействующая сил равна нулю.

Взаимодействие тел описывается вторым законом Ньютона: ускорение, приобретаемое материальной точкой, пропорциональное вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки. В более общем виде этот закон формулируется так: скорость изменения импульса материальной точки равна действующей на него силе. .

Третий закон Ньютона подчеркивает, что сила является мерой взаимодействия между телами: два тела взаимодействуют с силами и равными по модулю и противоположно направленными. Иными словами сила действия равна силе противодействия. .

Следует отметить, что законы Ньютона выполняются только в инерциальных системах отсчета. Под инерциальными понимаются системы отсчета, связанные с неподвижными объектами или с телами, движущимися прямолинейно и равномерно.

Важным следствием из законов Ньютона является закон сохранения импульса: при взаимодействии тел изолированной системы, суммарный импульс системы остается постоянным. .

Изолированной системой тел считается система, по отношению к которой внешними воздействиями на тела можно пренебречь. Для двух взаимодействующих тел этот закон выглядит так:

Сохранение импульса связано с однородностью пространства – свойством однородности пространства – времени.

За бесконечно малый промежуток времени материальная точка пройдет элементарный путь по траектории и переместится в пространстве на определенную величину. На этом участке на точку может действовать сила, направленная под некоторым углом к перемещению.

Скалярное произведение вектора силы на вектор перемещения называется элементарной работой силы на бесконечно малом перемещении.

Когда угол между направлением силы и перемещением не равен 90 градусов – эта сила совершает работу, а в случае, когда сила направлена по нормали к перемещению – работу она не совершает.

Совершающие работу тела имеют энергию. Величина называется кинетической энергией. Кинетической энергией называют энергию движущихся тел. Ее связь с импульсом тела задается соотношением или .

Потенциальной энергией называют величину, обусловленную взаимодействием тел или частей одного и того же тела.

В зависимости от сил взаимодействия, определяющих состояние системы различают:

— энергию упругих деформаций ,

где - коэффициент упругости, - величина деформации;

— потенциальную энергию тел в поле тяготения, которая на поверхности Земли имеет вид ,
где - гравитационная постоянная, - масса источника поля тяготения, - расстояние от источника поля до точки, в которой определяется энергия тела массой .

Силы упругости и силы тяготения являются консервативными. Рабо­та консервативных сил при перемещении тела из одного положения в другое не зависит' от формы траектории, по которой движется тело. Она определяется только положением начальной и конечной точек движе­ния. Работа консервативных сил на, замкнутом пути равна нулю.

В консервативных системах выполняется закон сохранения механи­ческой энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.

Существует еще один вид систем - диссипативные системы, в кото­рых механическая энергия постепенно уменьшается за счет преобразо­вания в другие (немеханические) формы энергии.

Для диссипативных систем справедлив более общий закон сохране­ния и превращения энергии: энергия не возникает из ничего и не исче­зает бесследно, энергия передается от одних 'тел другим и перехо­дит из одной формы в другую в эквивалентных количествах.

 

Расчетные формулы:

- расчеты, касающиеся диаметра шарика

- расчеты, касающиеся угла отклонения

- расчеты, касающиеся разности потенциалов

- формула массы шара

- скорости до и после удара

- кинетическая энергия шара до удара

- время свободного движения

- время соударения

- силы упругости подвеса до и после удара соответственно

- средняя сила удара

 

Проведем соответствующие расчеты и измерения:

Систематизируем результаты в виде таблиц:

, ,       , ,
  28,45 0,01   0,5 7 1,67
  28,4 0,04 3,5   9 0,33
  28,47 0,03   0,5 10 1,33
ср 28,44 0,03 3,5 0,33 8,67 1,11

 

, , , , , , , ,
0,0939 0,0322 0,0069 48,7 0,37 0,92 0,92 98,59

 

Вывод:

Выполнив данную работу, я экспериментально исследовал процессы перехода энергии от одних тел к другим, процессы сохранения импульса движущегося тела. Проведя соответствующие расчеты и измерения я определил силу упругости подвеса, а также определил среднюю силу удара.

Следует отметить, что значения силы упругости подвеса до и после удара разнятся пренебрежимо мало, но небольшая разница все же есть – это и свидетельствует о переходе части импульса ударившегося шарика в рельс. Кроме того, об этом более явно говорит разница в значениях скорости шарика до и после удара.

В качестве лабораторного оборудования и измерительных приборов мною были использованы: прибор для исследования соударений, вольтметр, устройство для измерения времени соударения, штангенциркуль.

 

ГОУ ВПО

ДВГУПС

 


Кафедра “Физика”

 

Лабораторная работа
На тему: “Изучение законов сохранения в механике”

 

21040165 03М 911

Шифр Номер работы Группа

 


Выполнил

Черных Д. С.

Проверил:
Старший преподаватель
кафедры “Оптические
системы связи”

Бодров Е. А.


Хабаровск 2006 г.

Цель работы:

Изучить законы сохранения в механике и измерить коэффициент восстановления при ударе шаров.

Приборы и оборудование:

Установка для изучения упругого и неупругого удара шаров, шары, линейка.

Краткая теория:

Для характеристики механического состояния при движении тела вводится физическая величина – импульс.

Импульс – это векторная величина, численно равная произведению массы тела на его скорость и имеющая направление, совпадающее с направлением скорости тела.

Согласно второго закона динамики: скорость изменения импульса тела равна по величине действующей силе и совпадает с ней по направлению. Т.о., любое изменение импульса этого тела может происходить только при действии сил.

Рассматривая систему тел, ее импульс определяется как векторная сумма импульсов тел, входящих в систему. Силы взаимодействия между телами, входящими в рассматриваемую систему, называются внутренними. Силы, действующие на систему со стороны других тел, не входящих в рассматриваемую систему, называются внешними.

Механические системы, на которые внешние силы не действуют, называются изолированными или замкнутыми.

В замкнутой системе тел суммарный импульс системы остается постоянным – в этом заключается закон сохранения импульса.

Введение понятия импульса, как меры механического движения не всегда пригодно для оценки изменения движения тела. Более универсальной мерой движения является энергия.

Энергияскалярная физическая величина, являющаяся общей мерой различных форм движения материи, рассматриваемых в физике. Энергия бывает механической, внутренней, электромагнитной, ядерной и т.д.

Энергия является важнейшей физической величиной, характеризующей способность тел или системы тел совершать работу, и измеряется величиной работы, которую при определенных условиях может совершить система.

Существует две разновидности механической энергии: кинетическая (обусловлена движением тел и зависит от скорости движения) и потенциальная (обусловлена взаимным расположением всех частей системы во внешнем поле потенциальных сил). Сумма кинетической и потенциальной энергии называется полной механической энергией.

Для замкнутой системы тел, в которой действуют только консервативные силы, полная механическая энергия системы остается постоянной – в этом заключается закон сохранения механической энергии.

Использование законов сохранения энергии и импульса позволяет решать многие задачи механики, не прибегая непосредственно к уравнениям движения.

Превращения кинетической энергии в потенциальную и обратно наблюдаются при ударе тел. Ударкратковременное взаимодействие тел, при этом оба тела деформируются и возникают ударные силы значительной величины.

Различают два предельных случая: абсолютно упругий и абсолютно неупругий удары.

При абсолютно упругом ударе на фазе сближения тел кинетическая энергия переходит полностью или частично в потенциальную энергию упругой деформации, на фазе разлета тела снова приобретают первоначальную форму, отталкивая друг друга. В итоге потенциальная энергия упругой деформации опять переходит в кинетическую и тела разлетаются. При абсолютно упругом ударе механическая энергия тел не переходит в другие немеханические виды энергии. Отметим также, что при абсолютно упругом ударе не выделяется теплота, следовательно, систему из двух взаимодействующих шаров можно считать замкнутой. К такой системе можно применить закон сохранения энергии и импульса.

Абсолютно упругий удар является идеальным случаем. В реальных случаях в зависимости от того, из какого вещества изготовлены шары, большая или меньшая часть механической энергии переходит в тепло.

Абсолютно неупругий удар характеризуется тем, что потенциальная энергия упругой деформации не возникает, кинетическая энергия тел полностью или частично превращается во внутреннею энергию, после удара сталкивающиеся тела либо покоятся, либо движутся с одинаковой скоростью.

Классическая теория удара предполагает, что все элементы каждого тела жестко связаны и будут мгновенно испытывать одинаковое изменение движения, являющееся результатом удара.

В действительности возмущение, порожденное в точке соударения, распространяется в телах с конечной скоростью, и его отражение от граничных поверхностей вызывает колебания и вибрации в телах. Местные быстроизменяющиеся деформации и механические напряжения, вызванные этим возмущением, не могут быть определены методами классической теории, но могут быть исследованы с помощью рассмотрения волнового явления.

Следует отметить, что при решении задач с использованием волновой теории удара возникают большие погрешности и неточности, связанные с математической сложностью вывода формул и расчетов.

 

Расчетные формулы:

- расчет среднего значение угла отклонения левого шара до удара.

Замечание: Значения средних углов отклонения второго шара до удара, первого шара после удара, второго шара после удара, средних значений скоростей шаров до и после удара, средних значений импульсов шаров до и после удара рассчитываются по аналогичной формуле ().

- скорость левого шара до удара.

Замечание: Значения скоростей правого шара до удара, а также левого и правого шаров после удара рассчитываются по данной формуле.

- импульс тела

- коэффициент восстановления

Проведем соответствующие расчеты и измерения:

0

0,8724+0,8724+0,8724=0,1047

0,0314+0,0325+0,0325=0,0964

0

Систематизируем результаты в виде таблиц:

До удара После удара
, Левый Правый Левый Правый
0,04 , , , , , , , ,
        0,8724 0,0349 13,5 0,7855 0,0314      
        0,8724 0,0349   0,8136 0,0325      
        0,8724 0,0349   0,8136 0,0325      
Ср         0,8724 0,0349 13,83 0,8042 0,0321      
0 0,1047 0,0964 0

 

Вывод:

Выполнив данную работу я на практике проверил закон сохранения импульса для удара двух деревянных шаров, близкого к абсолютно упругому. Я употребил фразу “близкого к абсолютно упругому” на следующих основаниях: дерево – материал не склонный к сильным деформациям при ударах с небольшой силой предметов с малыми массами; а кроме того, при подсчетах выяснилось, что значения импульса ударяющего шара до удара и ударяемого шара после удара практически одинаково, иными словами, импульс перешел почти без потерь.

Также я рассчитал коэффициент восстановления для данной установки, он оказался равен −0,9218.

В качестве измерительных приборов и оборудования мною были использованы: установка для изучения упругого и неупругого удара шаров, шары, линейка.

 




<== предыдущая лекция | следующая лекция ==>
Личностные результаты обучения | ГОУ ВПО. Лабораторная работа На тему: “Изучение законов сохранения в механике”

Дата добавления: 2015-09-18; просмотров: 414. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия