Методологические основы теории принятия решений.
В наиболее общем смысле теория принятия оптимальных решений представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора и оценивая. Ввиду того, что размерность практических задач, как правило, достаточно велика, а расчеты в соответствии с алгоритмами оптимизации требуют значительных затрат времени, то методы принятия оптимальных решений главным образом ориентированы на реализацию с помощью ЭВМ. Можно выделить следующие научно-технические предпосылки становления "Теории принятия решений": · удорожание "цены ошибки". Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем "волевые" решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные; · ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что "опыт" не успевал накапливаться и требовалось применение более развитого математического аппарата в проектировании; · развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические метода. Основой принятия решений является системный анализ. Очень близкое к термину "системный анализ" понятие – " исследование операций ", которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий). Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. Однако в зарубежной литературе термин "исследование операций" не является чисто математическим и приближается к термину "системный анализ". Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как: · постановка задач принятия решения; · описание множества альтернатив; · исследование многокритериальных задач; · методы решения задач оптимизации; · обработка экспертных оценок; · работа с макромоделями системы. Методологиявключает определения используемых понятий и принципы системного подхода. Дадим основные определения системного анализа. Элемент – некоторый объект, который обладает рядом важных для нас свойств, но внутреннее строение, которого безотносительно к цели рассмотрения. Связь – важный для целей рассмотрения обмен между элементами веществом, энергией, информацией. Система – совокупность элементов, которая обладает следующими признаками: · связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности; · свойством, отличным от свойств отдельных элементов совокупности. Структура системы – расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом. Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу. Структура системы может быть охарактеризована по имеющимся в ней типам связей. Простейшими из них являются последовательное, параллельное соединение и обратная связь. Декомпозиция – деление системы на части, удобное для каких-либо операций с этой системой. Иерархия – структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом. Принципы системного подхода – это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Известно около двух десятков таких принципов, ряд из которых целесообразно рассмотреть: · принцип конечной цели: абсолютный приоритет конечной цели; · принцип единства: совместное рассмотрение системы как целого и как совокупности элементов; · принцип связности: рассмотрение любой части совместно с ее связями с окружением; · принцип модульного построения: полезно выделение модулей в системе и рассмотрение ее как совокупности модулей; · принцип иерархии: полезно введение иерархии элементов и(или) их ранжирование; · принцип функциональности: совместное рассмотрение структуры и функции с приоритетом функции над структурой; · принцип развития: учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации; · принцип децентрализации: сочетание в принимаемых решениях и управлении централизации и децентрализации; · принцип неопределенности: учет неопределенностей и случайностей в системе.
|