Процесс переноса энергии
Это процесс лежит в основе явления теплопроводности. Если в некоторой среде возникает градиент температуры, то возникает поток тепла. В этом случае переносимой вели-чиной будет средняя кинетическая энергия теплового дви-жения одной молекулы . Плотность потока тепла составит . (2.14)
Переносимую величину представим в виде:
(2.15)
где – молярная теплоемкость при постоянном объеме. Отсюда получаем . (2.16)
Умножив и разделив на массу молекулы, и учтя, что – плотность вещества и – удельная теплоемкость вещества, получаем выражение для теплового потока через единичную площадь:
(2.17) где (2.18)
– коэффициент теплопроводности. Окончательно, . (2.19)
Полученное соотношение называется законом Фурье. Теплопроводность не зависит от давления и пропорцио-нальна . Коэффициент теплопроводности может быть получен из коэффициентов диффузии и вязкости:
. (2.20)
Коэффициент теплопроводности имеет размерность и численно равен энергии, переносимой в виде теплоты за 1 секунду через плоскую поверхность площадью при градиенте температуры, равном единице. Общими свойствами всех трёх коэффициентов является то, что эмпирически определив , и , мы можем вы-числить длину свободного пробега и эффективный диа-метр молекул .
|