Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсный анализ результатов регрессии





 

Источники вариации Число степеней свободы Сумма квадратов отклонений Дисперсия критерий
фактический Табличный
Общая Объясненная Остаточная 7-1=6 7-2=5   - 161,64 6,61

 

Так как в линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров, рассчитаем по каждому параметру стандартные ошибки: и корреляции

;

;

.

Фактическое значение критерия Стьюдента:

.

Проверим справедливость равенства:

(расхождения за счет округления).

При числе степеней свободы и уровне значимости = 0,05 табличное значение

Так как (2,57<12,71), то, следовательно, гипотезу о несущественности коэффициента регрессии можно отклонить. Доверительный интервал для коэффициента регрессии определяется как . 95 %-ные границы составят:

;

.

Так как то принимаем и считаем параметр случайно отличным от нуля.

(14,11>2,57), следовательно, коэффициент корреляции существенно отличен от нуля и зависимость является достоверной.

Для определения интервала прогноза по линейному уравнению регрессии рассчитаем:

1. Точечный прогноз при прогнозном , составляющем 190 % от среднего уровня.

;

.

2. Средняя стандартная ошибка прогноза

.

Для прогнозируемого 95 %-ный доверительный интервал при заданном определяется выраженным:

;

;

.

Чтобы иметь общее суждение о качестве модели определим среднюю ошибку аппроксимации:

,

что говорит о хорошем качестве уравнения регрессии, так как ошибка в пределах 5 - 7 % свидетельствует о хорошем подборе модели к исходным данным.

 

 







Дата добавления: 2015-08-12; просмотров: 382. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия