Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Система нормальных уравнений МНК будет иметь вид





Решая ее, получим:

Тогда, уравнение регрессии

Подставив в уравнение значения х, получим теоретические значения (последний столбец табл. 1).

Коэффициент регрессии показывает, что при увеличении выпуска продукции на 1 тыс. единиц, затраты на производство по группе предприятий возрастут в среднем на 36,6 тыс. д. е.

То, что , соответствует опережению изменения результата над изменением фактора.

В рассматриваемом примере имеем

Величина линейного коэффициента корреляции

что достаточно близко к 1 и означает наличие очень тесной зависимости затрат на производство от величины объема выпущенной продукции.

Для оценки качества линейной функции рассчитаем коэффициент детерминации

Следовательно, уравнением регрессии объясняется 97,6 % дисперсии результативного признака, а на долю прочих факторов приходится лишь 2,4 % его дисперсии (то есть остаточная дисперсия).

Так как близок к 1, следовательно, линейная модель хорошо аппроксимирует исходные данные и ее можно использовать для прогноза значений результативного признака.

Для оценки существенности линейной регрессии рассчитаем:

1. Общая сумма квадратов отклонений результативного признака

.

2. Факторная сумма квадратов

.

3. Остаточная сумма квадратов

.

4. Факторная дисперсия

.

5. Остаточная дисперсия

.

F – критерий

Табличное значение критерия для числа степеней свободы и уровня значимости = 0,05 равно

Поскольку (161,64>6,61), то можно сделать вывод о значимости уравнения регрессии (связь доказана). Оценка значимости уравнения регрессии обычно делается в виде таблицы дисперсного анализа.

Таблица 2







Дата добавления: 2015-08-12; просмотров: 370. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия