Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства ортогональных проекций





1. Проекция точки есть точка (рис. 1.9).

Рис. 1.9

2. Проекция прямой в общем случае есть прямая (рис. 1.10).

Если прямая располагается перпендикулярно какой-либо плоскости проекций (такая прямая называется проецирующей), то на эту плоскость она проецируется в виде точки (рис. 1.10).

3. Если точка лежит на прямой, то ее проекция располагается на соответствующей проекции этой же прямой А m Аp mp (рис. 1.11).

Рис. 1.10 Рис. 1.11

Примечание. Первые 3 свойства проекций являются общими для центрального и параллельного проецирования.

4. Если точка делит отрезок прямой в каком-либо отношении, то ее проекция делит проекцию отрезка в том же самом отношении (рис. 1.12).

Рис. 1.12

5. Если прямая параллельна плоскости проекций, то на эту плоскость эта прямая проецируется без искажений (рис.1.13).

m II mp = m, m II p [ Аp Вp ] = [ AB ].

Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется без искажения.

6. Если прямые в пространстве пересекаются, то их проекции также пересекаются (рис. 1.14).

m n = C mp пp сp

Рис. 1.13 Рис. 1.14

7. Если прямые в пространстве параллельны, то их проекции также параллельны (рис. 1.15).

a II b аp II b p

Примечание. Общими для косоугольного и прямоугольного проецирования являются свойства 4, 5, 6.

8. Если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость прямой угол проецируется без искажений (рис. 1.16).

ABC = 90°; AB|| p; BC|| p; Аp Вp Сp = 90°;

ABD = 90°; AB|| p; BD p; Аp Вp Dp = 90°.

Рис. 1.15 Рис. 1.16

Примечание. Свойство 8-е только для ортогонального проецирования.

9. Параллельный перенос фигуры в пространстве или плоскости проекций не изменяет вида и размеров проекции фигуры.







Дата добавления: 2015-08-12; просмотров: 495. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия