Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Q средств между N предприятиями.





Пусть х n – средства, выделенные n-му предприятию; они приносят в конце года прибыль сn(х n).

Будем считать, что х n принимает только целые значения, прибыль сn(х n) не зависит от вложения средств в другие предприятия и суммарная прибыль равна сумме прибылей, полученных от каждого предприятия. Тогда модель имеет вид:

Найти целочисленные неотрицательные переменные х n (n=1,2,…,N), удовлетворяющие ограничению:

n х n = Q, (2.8.2)

и обращающие в максимум функцию

С=∑n сn(х n). (2.8.3)

Здесь процесс распределения средств можно рассматривать как многошаговый, номер шага совпадает с номером предприятия; состояние будет определяться величиной sn – количество средств, подлежащих распределению на n-м шаге (с конца).

Обозначим fn(sn) – условную оптимальную прибыль, полученную от последних n предприятий при распределении между ними sn средств и вычисляемую в соответствие с динамическим рекуррентным соотношением:

fn(sn)=mах"хn(х n) + fn-1(sn-1)), n=1,2,…,N. (2.8.4)

Пример 2.8.2. Пусть N = 4, Q =5, значения сn(х n) заданы в табл. 2.8.1.

Таблица 2.8.1.

х с4(х) с3(х) с2(х) с1(х)
         
         
         
         
         

Как и в предыдущем примере начинаем анализ с последнего предприятия. Индекс «1» соответствует последнему предприятию, а индекс «4» –первому. Для n=1 прибыль проставлена в последней колонке.

Для n=2

f2(0)=mах[с2(0)+f1(0)]=0 при x 2(0)=0,

f2(1)=mах[с2(1)+f1(0),с2(0)+f1(1)]=mах[3+0,0+4]=4 при x 2(1)=0,

f2(2)=mах[с2(2)+f1(0),c2(1)+f1(1),с2(0)+f1(2)]=

=mах[4+0,3+4,0+6]=7 при x 2(2)= 1,

f2(3)=mах[с2(3)+f1(0),с2(2)+f1(1),с2(1)+f1(2),с2(0)+f1(3)]=

=mах[7+0,4+4,3+6,0+8]=9 при x 2(3)=1,

f2(4)=mах[с2(4)+f1(0),с2(3)+f1(1),с2(2)+f1(2),с2(1)+f1(3),с2(0)+f1(4)]=

=mах[11+0,7+4,4+6,3+8,0+13]=13 при х 2(4)=0,

f2(5)=mах[с2(5)+f1(0),с2(4)+f1(1),с2(3)+f1(2),с2(2)+f1(3),с2(1)+f1(4),с2(0)+f1(5)]

=mах[18+0,11+4,7+6,4+8,3+13,0+16]=18 при x2(5)=5.

Для n=3

f3(0)=mах[с3(0)+f2(0)]=0 при x3(0)=0,

f3(1)=mах[с3(1)+f2(0),с3(0)+f2(1)]=mах[6+0,0+4,]=6 при x 3(1)=1,

f3(2)=mах[с3(2)+f2(0),c3(1)+f2(1),с3(0)+f2(2)]=

=mах[9+0,6+4,0+7]=10 при x 3(2)=1,

f3(3)=mах[с3(3)+f2(0),с3(2)+f2(1),с3(1)+f2(2),с3(0)+f2(3)]=

=mах[11+0,9+4,6+7,0+9]=13 при x 3(3)=1 или 2,

f3(4)=mах[с3(4)+f2(0),с3(3)+f2(1),с3(2)+f2(2),с3(1)+f2(3),с3(0)+f2(4)]=

=mах[13+0,11+4,9+7,6+9,0+13]=16 при х 3(4)=2,

f3(5)=mах[с3(5)+f2(0),с3(4)+f2(1),с3(3)+f2(2),с3(2)+f2(3),с3(1)+f2(4),с3(0)+f2(5)]

=mах[15+0,13+4,11+7,9+9,6+13,0+18]=19 при x 3(5)=1.

И, наконец, для n=4

f4(0)=mах[с4(0)+f3(0)]=0 при x 4(0)=0,

f4(1)=mах[с4(1)+f3(0),с4(0)+f3(1)]=mах[8+0,0+6,]=8 при x 4(1)=1,

f4(2)=mах[с4(2)+f3(0),c4(1)+f3(1),с4(0)+f3(2)]=

=mах10+0,8+6,0+10]=14 при x 4(2)=1,

f4(3)=mах[с4(3)+f3(0),с4(2)+f3(1),с4(1)+f3(2),с4(0)+f3(3)]=

=mах[11+0,10+6,8+10,0+13]=18 при x 4(3)=1,

f4(4)=mах[с4(4)+f3(0),с4(3)+f3(1),с4(2)+f3(2),с4(1)+f3(3),с4(0)+f3(4)]=

=mах[12+0,11+6,10+10,8+13,0+16]=21 при х 4(4)=1,

f4(5)=mах[с4(5)+f3(0),с4(4)+f3(1),с4(3)+f3(2),с4(2)+f3(3),с4(1)+f3(4),с4(0)+f3(5)]

=mах[18+0,12+6,11+10,10+13,8+16,0+19]=24 при x 4(5)=1.

Теперь соберем оптимальное решение (при последовательном рассмотрении всех состояний оптимальные переходы подчеркивались):

Для первого предприятия, когда s4=5, видим, что x 4(5)=1, значит, первое предприятие получает 1 и остается s3=s4x 4(5)=5–1=4. Находим лучшее размещение средств для второго предприятия (на третьем с конца шаге) при s3=4. Это х 3(4)=2, остается s2=s3x 3(4)=4–2=2. На втором (с конца) шаге x 2(2)=1 и на последнее предприятие (первый с конца шаг) остается s1= s2x 2(2)=2–1=1 и x1(1)=1.

Максимум суммарной прибыли равен 24 у.е.







Дата добавления: 2015-06-29; просмотров: 347. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия