Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение неразрывности для многофазной среды





Выделим в пространстве фиксированный контрольный объем . Уравнение баланса массы записывается для каждой -ой фазы многофазной среды в объеме :

, (1)

где первое слагаемое представляет собой массу -ой фазы, накапливающуюся в объеме за единицу времени ; второе слагаемое – расход -ой фазы через поверхность , ограничивающую объем , ; в правой части уравнения (2.26)1 – масса -ой фазы, образующейся в объеме за единицу времени вследствие перехода массы из всех -ых фаз вследствие фазовых переходов и химических реакций; – интенсивность перехода массы из -ой фазы в -ую составляющую ,

 

Для записи (1) в алгебраической форме область течения разбиваем на малые контрольные объемы . Производная от плотности по времени для каждого малого объема записывается через конечные разности:

,

где верхние индексы и соответствуют параметрам в моменты времени и . Интегралы в уравнении (12.26) заменяются их приближенными выражениями по «теореме о среднем». Тогда получаем уравнение неразрывности для -ой фазы в алгебраической форме:

(2)

где верхний параметр 6 соответствует шести граням в 3D-пространстве, 4 –четырем граням контрольного объема на плоскости.

Для записи (1) в дифференциальной форме используется формула Гаусса-Остроградского:

Тогда для объема в области непрерывного движения имеем:

откуда, вследствие произвольности объема получаем уравнение неразрывности в дифференциальной форме:

(3)

Если просуммировать равенство (3) по с учетом (где – приведенная плотность фаз, – плотность смеси) и получим уравнение неразрывности смеси в целом или для однофазной среды

(4)

Для установившегося движения и уравнении неразрывности для сжимаемой жидкости в декартовой системе координат имеет вид:

(5)

Для установившегося двумерного течения несжимаемой жидкости уравнение неразрывности упрощается

(6)

Для установившегося движения сжимаемой среды в струйке тока или в канале (рис. 2.), из (1) при на поверхности

К выводу уравнения расхода

, (7)

откуда

вдоль струйки тока или в канале, где – массовый расход.







Дата добавления: 2015-08-12; просмотров: 767. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия