Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение баланса кинетической энергии





Известная из курса теоретической механики теорема об изменении кинетической энергии системы материальных точек устанавливает, что производная по времени от кинетической энергии системы материальных точек равна сумме мощностей внешних и внутренних сил.

Для сплошной среды эта теорема обобщается в следующем виде: индивидуальная производная по времени от кинетической энергии движущегося объема среды равна сумме мощностей внешних и внутренних сил, действующих на выделенную массу.

(103.23)

где первый интеграл в правой части представляет собой мощность внешних объемных сил, второй интеграл – мощность внешних поверхностных сил, сумма этих интегралов равна , третий интеграл – мощность внутренних сил ( – плотность распределения мощности внутренних сил). Уравнение (103.23) является уравнением баланса кинетической энергии в интегральной форме.

Для получения дифференциальной формы записи уравнение (103.23) преобразуется следующим образом:

используя тождество

и формулу Остроградского-Гаусса ,

из (103.23) получаем:

Ввиду произвольности объема приравниваем к нулю подынтегральную функцию. Тогда получим уравнение баланса кинетической энергии в дифференциальной форме.

(113.24)

Умножим скалярно уравнение движения в напряжениях (83.21) на вектор скорости :

(123.25)

Почленно вычтем (123.25) из (113.24) и получим:

(133.26)

Воспользуемся тождествами

где – диада (тензор) вектора скорости с компонентами , ().

Тогда из (133.26) получим:

(143.27)

Разложим на симметричную часть – тензор скоростей деформаций с компонентами

и антисимметричную часть – тензор ротации поля скорости с компонентами

При этом

Тензор напряжений – симметричный тензор. Произведение симметричного тензора на антисимметричный тензор равно нулю: и из (143.27) получаем выражения плотности распределения внутренних сил как свертку, то есть произведение тензора напряжений на тензор скоростей деформаций.

(153.28)

Уравнение баланса кинетической энергии (113.24) с учетом (153.28) запишется в виде:

(163.29)







Дата добавления: 2015-08-12; просмотров: 798. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия