Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение баланса внутренней энергии





Удельная внутренняя энергия определяется с точностью до постоянной и линейно зависит от температуры . для капельных жидкостей , для калорически совершенных газов , где – удельная теплоемкость жидкости, – удельная изохорная теплоемкость газа.

Уравнение баланса внутренней энергии в интегральной форме может быть получено вычитанием уравнения (3.23) из (3.30).

(3.37)

или, полагая, , с учетом (3.31) и (3.28)

(3.38)

Для преобразования уравнения (3.38) в алгебраическую форму для контрольных объемов , запишем правую часть (3.38) в виде:

(3.39)

Тогда из (3.38) и (3.39) получим:

(3.40)

Область течения разбиваем на конечное число малых, но конечных контрольных объемов (КО) – . В пределах каждого КО полагаем линейным или экспоненциальным изменение параметров по пространственным координатам и времени (см. п.4.4.).

Тогда из (3.40) получим уравнение баланса внутренней энергии в алгебраической форме.

, (3.41)

где – число граней контрольного объема, – номер грани.

Для получения дифференциального уравнения баланса внутренней энергии преобразуем левую часть (3.37), с использованием закона сохранения массы.

(3.42)

Поверхностный интеграл в (3.38) преобразуем в объемный по формуле Остроградского-Гаусса

.

Тогда из (3.37) и (3.31) получим:

(3.43)

Ввиду произвольности подынтегральная функция в (3.43) равна нулю:

. (3.43)

Используя закон Фурье для теплового потока из-за теплопроводности , где – коэффициент теплопроводности, получим уравнение:

(3.44)

Учитывая выражения для

; ,

где – диссинируемая мощность, т.е. необратимая часть мощности внутренних сил с противоположным знаком.

Тогда уравнение баланса внутренней энергии запишется в виде:

(3.45)

откуда следует, что изменение внутренней энергии происходит за счет подвода тепла вследствие теплопроводности, работы сил трения при деформации частиц, работы при деформации за счет сил давления и выделения теплоты за счет источников в потоке.

Уравнение баланса внутренней энергии -ой фазы аналогично (3.37), но включает в себя слагаемое, определяемое энергетическим взаимодействием между -ыми и -ой фазами .

Аналогично (3.43) выводится уравнение баланса внутренней энергии -ой фазы в дифференциальной форме

,

где и представляют собой работу внутренних сил и притока тепла в единицу времени, отнесенные к единице массы -ой фазы.







Дата добавления: 2015-08-12; просмотров: 777. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия