Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения турбулентного движения в форме Рейнольдса.





Рассмотрим уравнение неразрывности для мгновенных значений скорости и плотности при неустановившемся движении сжимаемой среды.

(11.26)

Где производится суммирование по повторяющимся индексам

(11.27)

Для несжимаемой жидкости (ρ=сonst) уравнение неразрывности превращается:

(11.28)

Проведем осреднение слагаемых (11.28) по правилу (11.2)

Тогда, с использованием свойств осреднения 1(11.4), 5(11.8), 8(11.11), 4(11.7), 9(11.12), получим

(11.29)

Введем обозначение . Тогда уравнение неразрывности примет вид, совпадающий по форме с (11.26)

(11.30)

Для несжимаемой жидкости уравнение (11.30) упрощается

(суммирование по j=1,2,3) (11.31)

В системе координат (x,y,z) уравнение неразрывности при турбулентном течении несжимаемой среды имеет вид

Вычитая (11.31) из (11.28) получим уравнение неразрывности для мгновенных пульсационных значений скорости

(11.32)

Уравнение движения Навье-Стокса запишем для мгновенных значений скорости, плотности, давления, массовой силы и коэффициента вязкости в проекции на оси xi (i =1,2,3)

(11.33)

Умножим уравнение (11.31) на . Получим уравнение

(11.34)

Сложим уравнения (11.33) и (11.34)

(11.35)

Осредним уравнение (11.35) по правилу (11.2)

(11.36)

Положим для простоты дальнейших выкладок . Тогда используя свойства 1,5,8,4 и 9 осреднения (11.2) получим

(11.37)

Разделив (11.37) на плотность ρ; и обозначив снова , то есть отбросив формально знаки осреднения, получим уравнение Рейнольдса для осредненного турбулентного течения в проекции на оси координат

(11.38)

Уравнение (11.38) называется уравнением Рейнольдса. Это уравнение содержит новые неизвестные корреляции скорости . Величины представляют собой напряжения, которые возникают при ламинарном движении среды, добавочные напряжения возникающие в турбулентном потоке можно записать как , где - динамический коэффициент турбулентной вязкости. Добавочными напряжениями в турбулентном потоке называются напряжения Рейнольдса. Напряжения Рейнольдса образуют симметричный тензор второго ранга - тензор “турбулентных напряжений”

(11.39)

Компоненты тензора турбулентных напряжений характеризуют перенос осредненного количества пульсационного движения (импульса) пульсационными скоростями. Тензор напряжений в турбулентном потоке с учетом “турбулентных” напряжений можно представить в виде

(11.39)

где компоненты тензора выражаются как

, (11.40)

где - эффективный коэффициент вязкости.







Дата добавления: 2015-08-12; просмотров: 741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия