Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения пограничного слоя.





При обтекании твердой поверхности жидкостью (или газом) с большими числами Re влияние вязкости проявляется в пределах тонкого пограничного слоя δ (рис. 7.1.) Вне этого слоя во многих задачах среда может полагаться невязкой и ее течение описывается системой уравнений Эйлера. Л. Прандтль установил, что в пределах тонкого пограничного слоя уравнения вязкой среды могут быть существенно упрощены в предположении о сопоставимости сил вязкости и инерции. Если между поверхностью обтекаемого тела и жидкостью происходит тепло и массообмен то вблизи твердой стенки возникают тепловой и диффузионный пограничные слои толщиной δт и δс. Скорость, температура и концентрация примеси принимают у стенки значения Uст, Тст и Сст и асимптотически приближаются к значениям U , Т , С во внешнем потоке Физические условия «прилипания» жидкости на поверхности соответствует равенству нулю скорости потока Uст = 0. За толщины пограничных слоев δ, δт, δс обычно принимаются расстояния от стенки по нормали, на которых скорости, температуры и концентрации примеси отличаются на 1% от соответствующих значений во внешнем потоке.

Рис. 7.1. Схема динамического, теплового и концентрационного пограничных слоев на криволинейной поверхности

4.10.1. Система уравнений вязкой жидкости рассматривается при следующих допущениях: течение двумерное, среда однофазная, внешние объемные силы отсутствуют. При этих допущениях система уравнений Навье-Стокса имеет вид:

- уравнение неразрывности

(7.1)

1 1∙1

- уравнение движения в проекции на ось х

(7.2)

1 1 δ δ2 δ2

- уравнение движения в проекции на ось у

(7.3)

1 1 δ δ2 δ2

- уравнение баланса энергии

(7.4)

1 1 δ 1 1∙1 δ δ2 δ2 δ2

где Ф – диссипативная функция

,

где под каждым слагаемым записаны порядки величин, которые необходимо оценить.

Будем считать, что толщины δ и δт имеют порядок δ значительно меньший по сравнению с расстоянием х. Порядок х, а, Uх, Т, ρ, р – примем за 1. Тогда δ << х. Оценим порядки слагаемых в уравнениях (7.1) – (7.4) и разместим эти порядки под соответствующими величинами. В уравнении неразрывности слагаемое ~ то есть имеет порядок 1 и, следовательно, ~1 и т.к. у ~ δ, то Uу ~ δ. Производные ~ 1 и ~ 1, т.е. имеют порядок 1, а производные имеют порядки и соответственно. Полагая, что силы вязкости и инерции имеют в пределах пограничного слоя одинаковый порядок получим из (7.2) 1 ~ и μ ~ . Тогда число ~ . Это означает, что условием образования тонкого динамического пограничного слоя при обтекании поверхности является ~ , то есть большая по сравнению с 1 величина чисел . В уравнении энергии (7.4) полагаем, что тепловые потоки из-за теплопроводности имеют такой же порядок что и конвективный тепловой поток. Тогда слагаемое имеет порядок 1 и, следовательно, λ имеет порядок δ2.

Таким образом, оставляя в уравнениях слагаемые, имеющие большие порядки, а именно в (7.2) порядка 1, в (7.3) порядка и в (7.4) порядка 1 и пренебрегая слагаемыми меньшего порядка систему сопряженных дифференциальных уравнений сжимаемых динамического и теплового пограничных слоев:

- уравнение неразрывности

(7.5)

- уравнение движения в проекции на ось х

(7.6)

- уравнение движения в проекции на ось у

(7.7)

- уравнение баланса энергии

(7.8)

Замыкающим уравнением является уравнение состояния

ρ = ρ (р,Т) (7.9)

Система уравнений (7.5) – (7.9) содержащее 5 неизвестных ρ (х, у), Ux (х, у), Uy (х, у), р (х, у), Т (х, у) является замкнутой при известных μ(т), λ(т), Ср(т) и относится к системам уравнений параболического типа.

Граничные условия в задачах расчета пограничных слоев задаются в следующем виде:

- в сечении при входе на рассматриваемый участок пограничного слоя задаются профили продольной скорости и температуры

при х = 0, Ux = Ux0(y), Т =Т0(у), а также профиль поперечной скорости у = Uу0(y), удовлетворяющий уравнению неразрывности.

- на твердой стенке

при у = 0, Ux = Uxст(х), Uу = Uуст(х), Т =Тст(х), в частном случае условий «прилипания» жидкости на стенке Uxст = Uуст = 0

- на внешней границе пограничного слоя

у→ ∞ (у >δ, у >δт), р = р(х), Т = Т(х)

Скорость потока на внешней границе пограничного слоя находится из уравнения Бернулли для газа

, (7.10)

где К – показатель адиабаты газа. Система уравнений (7.5) – (7.9) с выписанными граничными условиями решается численно стандартным методом конечных разностей, методом контрольных объемов и другими.

Для несжимаемой жидкости плотность ρ = ρ0 = соnst и система уравнений пограничного слоя (7.4) – (7.8) упрощается:

(7.11)

- уравнение движения в проекции на ось х

(7.12)

- уравнение движения в проекции на ось у

; (7.13)

- уравнение энергии

(7.14)

Для калорически совершенного (идеального) газа уравнение состояния

(7.15)

и удельная энтальпия i равна

i = CpT

Полагая удельную массовую изобарную теплоемкость Ср постоянной, умножая (7.6) и складывая почленно результат с (7.8) получим уравнение энергии в форме Широкова

(7.16)

где - число Прандтля - температура адиабатического λ по скорости Ux.

 







Дата добавления: 2015-08-12; просмотров: 1445. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия