ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ
10. Доказать, что если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого, то такие треугольники подобны. 11. Стороны треугольника относятся как 4: 5: 6. Найдите стороны треугольника, подобного данному, если меньшая сторона второго треугольника равна 0,8 см. 12. Докажите, что в подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т.е. тем высотам, которые опущены на сходственные стороны. 13. В остроугольном треугольнике АВС проведены неравные высоты АМ и ВN. 1)Докажите, что треугольники АМС и ВNС подобны. 2) Докажите, что треугольник MNC подобен треугольнику АВС. Вычислите коэффициент подобия этих треугольников. 14. Доказать, что биссектриса внешнего угла треугольника пересекает продолжение противоположной стороны в точке, расстояния от которой до концов этой стороны пропорциональны прилежащим сторонам треугольника. 15. На высотах ВВ 1 и СС 1 треугольника АВС взяты точки В 2 и С 2 так, что AB 2 C = AC 2 B = 900. Докажите, что АВ 2 = АС 2. 16. В подобных треугольниках из вершин равных углов проведены высота и биссектриса. 1) Докажите, что углы между высотой и биссектрисой в обоих треугольниках равны. 2) Докажите, что будут равны углы между любыми сходственными высотами и биссектрисами подобных треугольников (т.е. высоты проведены к сходственным сторонам, а биссектрисы – из вершин равных углов). 17. В треугольнике АВС известно, что ВС = 12 см, АС = 8 см и угол А вдвое больше угла В. Найдите АВ. 18. Доказать, что две параллельные прямые, пересекаемые рядом прямых, исходящих из одной и той же точки, рассекаются ими на пропорциональные части. 19. На стороне ВС треугольника АВС взята точка А 1 так, что . В каком отношении медиана СС 1 делит отрезок АА 1? 20. Стороны треугольника равны 51, 85 и 104 см. Проведена окружность, которая касается двух меньших сторон треугольника, а центр ее лежит на большей стороне. На какие части большая сторона треугольника делится центром окружности? 21. В треугольнике с основанием а и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а другие две – на боковых сторонах. Найдите сторону квадрата.
|