Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выбор трансформаторов





 

Выбор трансформаторов включает в себя определение числа, типа и но­миналь­ной мощности трансформаторов структурной схемы проектируемой электроус­та­новки.

Рекомендуется применять трехфазные трансформаторы, и только в слу­чае не­возможности изготовления заводами трансформаторов необходимой мощности или при наличии транспортных ограничений допускается примене­ние групп из двух трехфазных или трех однофазных трансформаторов. Резерв­ный однофаз­ный трансформатор предусматривают при установке большого числа (девять и более) однофазных единиц и при выполнении связи между РУ высшего и сред­него напряжений посредством одной автотрансформаторной группы. Замена поврежденного трансформатора фазы резервным осуществля­ется путем их пе­рекатки, без сооружения стационарной ошиновки.

Все трехобмоточные трансформаторы и автотрансформаторы, а также двухоб­моточные трансформаторы подстанций и станций, кроме включенных в блоки с генераторами, должны иметь встроенные устройства для регулирова­ния напря­жения под нагрузкой (РПН).

Выбор номинальной мощности трансформатора производят с учетом его нагру­зочной способности. В общем случае условие выбора мощности трансформа­тора имеет вид

Sрасч£Sном·kп, (1.3)

где Sрасч– расчетная мощность;

Sном– номинальная мощность трансформатора;

kп – допустимый коэффициент перегрузки.

При определении Sрасч принимается во внимание нагрузка на пятый год, если считать от конца сооружения электроэнергетического объекта, причем учитывается перспектива даль­нейшего его развития на 5-10 лет вперед.

Выбор блочных трансформаторов. Блочный трансформатор должен обеспечивать выдачу мощности генератора в сеть повышенного напря­жения за вычетом мощности нагрузки, подключенной на ответвлении от гене­ратора. При этом возможны два варианта:

1) на ответвлении к блоку подсоединена только нагрузка собственных нужд.

В этом случае

. (1.4)

 

При равенстве коэффициентов мощности генератора и потребителей собствен­ных нужд

Sрасч»Sном,г–Sс.н, (1.5)

 

2) на ответвлении к блоку подключены местная нагрузка и нагрузка собствен­ных нужд.

Тогда , (1.6)

где Рном.г , Qном.г – активная и реактивная номинальные мощности генератора; Рс.н., Qс.н. – активная и реактивная нагрузки собственных нужд;

Рм.н, Qм.н – ак­тивная и реактивная местные нагрузки.

Если генератор включается в блок с повышающим авто­трансформатором (обычно без местной нагрузки), то расчетная мощность последнего определяется макси­мальной нагрузкой третичной обмотки, к которой присоединен генератор:

, (1.7)

где .

– коэффициент типовой мощности автотрансфор­матора. При этом предполагается, что мощность третичной обмотки равна типовой мощности автотрансфор­матора.

После выбора номинальной мощности автотрансформатора проверяют возмож­ность передачи через него максимальной мощности из РУ СН в РУ ВН. Если такой режим нагрузки оказывается недопустимым, то изменяют или число бло­ков, присоединенных к РУ СН, или число автотрансформаторов, или реже их мощность.

Если суточный график нагрузки генератора, а следовательно, и блочного трансформатора имеет заметно выраженное понижение мощности в ночное время, то при выборе номинальной мощности трансформатора можно учесть его способ­ность к систематическим перегрузкам в дневное время без сокращения срока службы, т.е.

, (1.8)

где kп.сист – допустимый коэффициент систематических перегрузок, который определяют по графикам нагрузочной способности трансформаторов (мощно­стью до 250 МВА включительно), согласно ГОСТ 14209-85.

Если блок работает в базовой части графика нагрузки, то выбор блочного трансформатора необходимо производить без учёта его перегрузочной способности.

Выбор трансформаторов связи на электростанциях. Расчетную мощность автотрансформаторов связи, включенных между РУ выс­шего и среднего напряжения определяют на основе анализа перетоков мощ­но­сти между этими РУ в нормальном и аварийном режимах. В частности, необ­хо­димо рассматривать отключение одного из блоков, присоединенных к РУ СН. При выборе числа автотрансформаторов связи учитывают, во-первых, тре­буе­мую надежность электроснабжения потребителей сети СН, а во-вторых, до­пус­тимость изолированной работы блоков на РУ СН. Если нарушение связи между РУ высшего и среднего напряжений влечет за собой недоотпуск элек­троэнер­гии потребителям или окажется, что минимальная нагрузка сети СН ниже тех­нологического минимума мощности отделившихся блоков, то преду­сматривают два автотрансформатора связи.

При выборе трансформаторов связи между РУ генераторного (ГРУ) и повышенного напряжений ТЭЦ руководствуются соображениями надежности тепло- и электроснабжения мест­ного потребителя. На ТЭЦ, как правило, предусматривают два трансформа­тора связи ГРУ с системой. Один трансформатор связи можно установить лишь в тех редких случаях, когда нарушение связи ТЭЦ с системой, сопровождаю­щееся переходом генераторов на работу по графику местной электрической на­грузки, не вызывает ограничения теплового потребления. Однако даже при на­личии условий, определяющих принципиальную возможность выбора одного транс­форматора связи, из соображений уменьшения перетоков мощности ме­жду сек­циями обычно устанавливают все-таки два трансформатора связи.

При выборе номинальной мощности трансформаторов связи составляют и анализи­руют предполагаемые графики нагрузки трансформаторов: а) в нормальном режиме; б) при отключении одного из работающих генераторов.

Мощность, передаваемая через трансформаторы связи, в общем случае (при разных значениях коэффициентов мощности генераторов, местной нагрузки и собственных нужд)

, (1.9)

где РSг, QSг – суммарные активная и реактивная мощности генераторов, присое­диненных к ГРУ.

Учет на­грузоч­ной способности трансформаторов связи зависит от режима, определившего расчетную (наи­большую) мощность. В нормальном режиме работы по диспетчерскому (т.е. заданному диспетчером системы) графику нагрузки трансформаторы, как правило, не должны перегружаться. В остальных случаях, если вероятность расчетного режима достаточно велика (плановое или аварийное отключение одного генератора на станции, аварийная ситуация в системе), то при выборе номинальной мощности можно идти лишь на пере­грузку без сокращения срока службы (kп.сист). В тех случаях, когда рас­четный режим редкий (отказ одного из трансформаторов связи), при выборе Sном ис­пользуют коэффициент допустимой аварийной перегрузки kп.ав. Расчёт допустимых перегрузок выполняется в соответствии с ГОСТ 14209-85.

Выбор трансформаторов на подстанциях. Число трансформаторов на подстанции выбирают в зависимости от мощности и ответственности потребителей, а также наличия резервных источ­ников пита­ния в сетях среднего и низшего напряжений.

Так как большей частью от подстанции питаются потребители всех трех кате­горий, и питание от системы подводится лишь со стороны ВН, то по условию надежности требуется установка двух трансформаторов.

На очень мощных узловых подстанциях может оказаться экономически целесо­образной установка трех- четырех трансформаторов (автотрансформаторов).

На однотрансформаторных подстанциях номинальная мощность трансформа­тора выбирают с учетом возможности систематических перегрузок:

, (1.10)

где ; (1.11)

Рmax – максимальная нагрузка наиболее загруженной об­мотки трансформатора на 5-й год, если считать с момента ввода первого транс­форматора.

При установке на подстанции более одного трансформатора (в общем случае Nт) расчетным является случай отказа одного из трансформаторов, ко­гда ос­тавшиеся в работе трансформаторы с учетом их аварийной перегрузки должны передавать всю необходимую мощность:

. (1.12)

Расчетный коэффициент аварийной перегрузки трансформаторов при проекти­ровании принимается равным 1,4. Такая перегрузка допустима в тече­ние не бо­лее 5 суток при условии, если коэффициент начальной нагрузки не более 0,93, а длительность максимума нагрузки не более 6 часов в сутки.


2. ОБЩИЕ ВОПРОСЫ ВЫБОРА
ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ

 

Все электрические аппараты, токоведущие части и изоляторы на станциях и подстанциях должны быть выбраны по условиям длительной работы и проверены по условиям короткого замыкания в соответствии с указаниями “Правил устройств электроустановок” и “Руководящих указаний по расчету токов коротких замыканий, выбору и проверке аппаратов и проводников по условиям короткого замыкания”.

Выбор аппаратов и проводников для проектируемой установки начинают с определения по заданной электрической схеме расчётных условий, а именно: расчётных рабочих токов присоединений, расчётных токов короткого замыкания и т.д.

Расчетные величины сопоставляют с соответствующими номинальными параметрами аппаратов и проводников, выбираемых по каталогам и справочникам.

При выборе аппаратов необходимо учитывать род установки (наружная или внутренняя), температуру окружающего воздуха, влажность и загрязненность помещения, а также габариты, вес, стоимость аппарата, удобство его размещения в распределительном устройстве.

Различают следующие (табл. 2.1) напряжения электрических сетей и присоединённых к ним источников и приемников электрической энергии в установках выше 1000 В: номинальное междуфазное напряжение Uном, наибольшее рабочее напряжение Umax и среднее рабочее напряжение Uср (значения напряжений выражено в кВ).

Таблица 2.1

Величины напряжений, кВ

Uном                      
Uср 3,15 6,3 10,5                
Umax 3,6 7,2     40,5            

 

Изоляция электрических аппаратов и кабелей должна соответствовать номинальному напряжению установки Uу, для чего должно быть выполнено условие

Uу £ Uном, (2.1)

где Uном - номинальное напряжение аппарата или кабеля.







Дата добавления: 2015-08-12; просмотров: 1478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия