Студопедия — Резонансные частотомеры
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Резонансные частотомеры






Особенностями резонансных частотомеров, применяемых для измерения высоких и сверхвысоких частот, являются простота конструкции, быстрота функционирования и однозначность результатов измерений; погрешность измерений составляет 0,1-3%.

Резонансный частотомер представляет собой колебательную систему, настраиваемую в резонанс с измеряемой частотой fx возбуждающих её колебаний, которые поступают от исследуемого источника через элемент связи. Резонансная частота определяется по показаниям калиброванного органа настройки. Состояние резонанса фиксируется с помощью встроенного или внешнего индикатора.

Частотомеры, измеряющие частоты от 50 кГц до 100-200 МГц, выполняются в виде колебательного контура из элементов с сосредоточенными постоянными: катушки индуктивности L0 и конденсатора переменной ёмкости С0 (рис. 16). В контуре частотомера наводится Э.Д.С. измеряемой частоты fx, например за счёт индуктивной связи с источником колебаний через катушку L0 или небольшую штыревую антенну, присоединяемую к гнезду Ан. При маломощном источнике связь с последним может быть ёмкостной через конденсатор связи Ссв (ёмкостью в несколько пикофарад) и проводник связи. Изменением ёмкости конденсатора С0 контур настраивают в резонанс с частотой fx по максимальным показаниям индикатора резонанса. При этом измеряемая частота fx, равная собственной частоте контура:

f0 = 1/(2π*(L0C0)0,5),

определяется по шкале конденсатора С0.

При фиксированной индуктивности L0 диапазон измеряемых частот ограничивается коэффициентом перекрытия под которым понимают отношение максимальной частоты настройки частотомера fм к наименьшей частоте fн при изменении ёмкости контура от начального значения Сн до максимального См. Начальная ёмкость контура Сн слагается из начальной ёмкости конденсатора С0, ёмкости монтажа и ёмкостей постоянных или подстроечных конденсаторов, включаемых в контур с целью получения требуемого коэффициента перекрытия или для других целей (рис. 17). При необходимости расширения диапазона измеряемых частот частотомер снабжается несколькими катушками различной индуктивности, сменными (рис. 16) или переключаемыми (рис. 17). В последнем случае неиспользуемые катушки (если они не экранированы) желательно замыкать накоротко во избежание отсасывания ими энергии из контура частотомера при частотах настройки, близких к собственным частотам этих катушек; при этом связь с источником колебаний осуществляют через гнездо связи Ан или посредством выносной катушки связи Lсв из одного или нескольких витков, подключаемой к контуру гибким высокочастотным кабелем (рис. 17).

Индикаторы резонанса позволяют фиксировать состояние резонанса по максимуму тока в контуре или максимуму напряжения на элементах контура. Индикаторы тока должны быть низкоомными, а индикаторы напряжения - высокоомными; тогда потери, вносимые ими в контур, не будут вызывать заметного притупления резонансной характеристики контура.

Рис. 16. Схема резонансного частотомера с индикатором тока и сменными контурными катушками

В качестве индикаторов тока иногда применяют термоэлектрические миллиамперметры с током полного отклонения до 10 мА, включаемые последовательно в контур частотомера (рис. 16); при эксплуатации такого частотомера следует весьма осторожно устанавливать связь с объектом измерений и не допускать перегрузки термоприбора при подходе к резонансу. Простейшим индикатором тока может служить миниатюрная лампочка накаливания Л; погрешность измерений при этом, естественно, возрастает.

В современных частотомерах чаще всего применяют индикаторы напряжения - высокочастотные вольтметры со стрелочными измерителями; они обеспечивают высокую точность индикации при хорошей стойкости к перегрузкам. Простейший такой индикатор (рис. 17, а) состоит из точечного диода Д и чувствительного магнитоэлектрического измерителя И, зашунтированного от высокочастотных составляющих выпрямленного тока конденсатором С2. Частотомер со стрелочным измерителем можно использовать в качестве индикатора напряжённости поля при снятии диаграмм направленности передающих антенн.

Рис. 17. Схемы резонансных частотомеров с индикаторами напряжения и переключаемыми контурными катушками

Если исследуемые колебания являются модулированными, то индикатором может служить высокоомный телефон Тф (рис. 17, а). При этом резонанс отмечают по наибольшей громкости тона модулирующей частоты. Такой частотомер пригоден для слухового контроля качества работы радиотелефонных передатчиков.

Резонансные частотомеры характеризуются чувствительностью, т. е. минимальным значением подводимой к ним высокочастотной мощности, при котором обеспечивается чёткая индикация резонанса; обычно оно находится в пределах 0,1-5 мВт, а при использовании лампочки накаливания возрастает до 0,1 Вт. С целью повышения чувствительности в индикатор резонанса иногда вводят (после детектора) транзисторный усилитель постоянного тока с большим входным сопротивлением; простейшая схема такого усилителя показана на рис. 17, б.

На сверхвысоких частотах контуры из элементов с сосредоточенными постоянными становятся малоэффективными из-за резкого уменьшения их добротности. В диапазоне частот от 100 до 1000 МГц достаточно хорошие результаты достигаются в частотомерах с контурами смешанного типа, имеющими сосредоточенную ёмкость и распределённую индуктивность (рис. 18). В качестве элемента индуктивности L0 используется криволинейный отрезок (виток) посеребренной медной проволоки или трубки диаметром 2-5 мм. Переключатель В определяет поддиапазон измерений. Настройка частотомера производится изменением рабочей длины витка индуктивности L0 посредством поворотного контактного движка. Верхний предел измеряемых частот ограничивается значением ёмкости монтажа См. Связь с источником исследуемых колебаний осуществляется через виток связи L1.

Рис. 18. Схема резонансного частотомера с контуром смешанного типа

На рис. 19 приведена схема широкодиапазонного однопредельного частотомера с коэффициентом перекрытия в пределах 5-10; здесь элементом индуктивности контура является металлическая пластинка Пл, согнутая в дугу и соединённая со статором St конденсатора переменной ёмкости. По пластинке скользит движок, механически и электрически связанный с ротором Rot конденсатора. При повороте ротора одновременно увеличиваются (или уменьшаются) как ёмкость контура, так и его индуктивность. Такие частотомеры наряду с широким диапазоном измерений имеют довольно высокую добротность при малых габаритах. В диапазонах метровых, дециметровых и сантиметровых волн для измерения параметров электромагнитных колебаний применяются приборы, использующие колебательные системы с распределёнными постоянными - отрезки линий передач и объёмные резонаторы.

Рис. 19. Схема широкодиапазонного однопредельного резонансного частотомера СВЧ

Для повышения стабильности градуировочной характеристики элементы контура частотомера должны иметь прочную и жёсткую конструкцию и изготовляться из материалов с малым температурным коэффициентом. Наибольшая погрешность, обусловленная влиянием внешних факторов, имеет место при измерении самых высоких частот каждого поддиапазона, когда ёмкость конденсатора С0 мала. Для снижения этой погрешности иногда увеличивают начальную ёмкость контура посредством включения параллельно конденсатору С0 постоянного или подстроечного конденсатора (С1 на рис. 17, а). При этом уменьшается коэффициент перекрытия по частоте, что способствует снижению погрешности измерения частоты, но одновременно увеличивает число потребных поддиапазонов. Погрешность измерений также уменьшается, если управление органом настройки производить через верньерное устройство с замедлением в несколько десятков раз. В приборах промышленного изготовления рукоятку верньера часто снабжают шкалой, разбитой на 100 делений, а на основной - шкале органа настройки частотомера наносят деления, отмечающие число полных поворотов рукоятки верньера. При совместном использовании обеих шкал удаётся получить несколько тысяч отсчётных точек; соответствующие им частоты определяются с помощью таблиц или графиков.

Перестройка частотомера, возбуждаемого источником колебаний частоты fx, вызывает изменение тока в его контуре в соответствии с резонансной кривой последнего (рис. 20). Чем выше добротность контура, тем острее его резонансная кривая и тем меньше возможная ошибка при фиксации резонанса. Для достижения высокой добротности элементы контура должны иметь малые потери, а связь контура с индикатором резонанса и исследуемым источником должна быть возможно слабее.

Связь с индикатором можно уменьшить, применив, например, ёмкостный делитель напряжения (рис. 17, б) с отношением ёмкостей С2/С1 >> 1. Следует, однако, учитывать, что ослабление связи с контуром ведёт к необходимости повышения чувствительности индикатора или усиления связи с исследуемым источником.

При использовании в частотомере прямочастотного конденсатора можно получить почти равномерную шкалу частот. Градуируют резонансные частотомеры при помощи образцовых гетеродинных частотомеров, а в диапазонах СВЧ для этого применяют измерительные линии. Приближенную градуировку можно выполнить, имея измерительный генератор или передатчик с плавным диапазоном частот.

Рис. 20. Резонансная характеристика резонансного частотомера

При измерениях частотомер или его элемент связи вносят в зону излучения исследуемого источника. Подбором их взаимного расположения устанавливают такую связь, чтобы при резонансе стрелка индикатора находилась примерно в середине его шкалы.

При малой чувствительности частотомера приходится усиливать связь с источником колебаний; это ведёт к уплощению резонансной характеристики частотомера, что затрудняет точную фиксацию состояния резонанса. Для уменьшения возможной ошибки применяют способ двух отсчётов. После приближённой настройки частотомера в резонанс с измеряемой частотой fх изменением ёмкости С0 расстраивают контур сперва в одну, а затем в другую сторону от резонансной частоты до получения одного и того же показания индикатора (I1-2) примерно в пределах 50-70% резонансного значения Iм (рис. 20). Так как при этом используются крутые склоны резонансной кривой, то определить частоты настройки контура f1 и f2, соответствующие току можно с большой точностью. Измеряемая частота fх = (f1 + f2)/2.

Если исследуемые колебания несинусоидальны, то возможна настройка частотомера на одну из гармоник. При этом частотомер обнаружит настройку и на ряд других частот, кратных основной частоте колебаний. Последняя определится как самая низкая из ряда найденных резонансных частот.

Если Э.Д.С., наводимая в контуре частотомера, недостаточна для нормальной работы индикатора резонанса, то измерение можно выполнить способом реакции (поглощения, абсорбции): настройку в резонанс определяют по воздействию частотомера на режим генератора, от которого измерительный контур поглощает некоторую энергию. Между контурами генератора и частотомера устанавливают достаточно сильную связь и плавно изменяют настройку последнего. При резонансе постоянная составляющая анодного (или коллекторного) тока генератора достигает максимума, а постоянная составляющая тока управляющей сетки (или базы) резко падает, что может быть обнаружено при включении чувствительного измерителя постоянного тока в одну из указанных цепей. На частоту генерируемых колебаний частотомер не влияет, ибо при резонансе он вносит в контур генератора лишь активное сопротивление.

Резонансный частотомер является прибором пассивного действия, так как его работа основана на поглощении энергии источника измеряемой частоты. Поэтому он непригоден для непосредственного измерения частоты настройки радиоприёмников и изолированных колебательных контуров. Однако несущую частоту радиостанции, на которую настроен приёмник, можно измерить достаточно точно способом реакции. Для этого контур частотомера связывают с антенной цепью приёмника посредством включаемой в эту цепь катушки связи или приближением к магнитной антенне. Настройку частотомера изменяют до получения резонанса, который обнаруживается по резкому спаду громкости звуковых сигналов, воспроизводимых приёмником.

 







Дата добавления: 2015-08-12; просмотров: 1922. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия