Гетеродинные частотомеры
Гетеродинные частотомеры применяются для точных частотных измерений в плавном диапазоне высоких частот. В принципе гетеродинный частотомер отличается от кварцевого калибратора, выполненного по функциональной схеме на рис. 12, лишь тем, что вместо кварцевого генератора в нем используется гетеродин, т. е. маломощный генератор с плавно регулируемой частотой настройки. Наличие смесителя позволяет использовать прибор не только для градуировки частотных шкал радиоприёмников, но и для измерения методом нулевых биений частоты генераторов. Индикация нулевых биений осуществляется телефонами, осциллографическими и электронно-световыми индикаторами, а также стрелочными измерителями. Погрешность измерений гетеродинного частотомера в основном определяется стабильностью частоты гетеродина и погрешностью её установки. Поэтому часто предпочитают гетеродины выполнять на электронных лампах. Повышению стабильности частоты способствуют правильный выбор схемы и конструкции гетеродина, применение в нем деталей с малым температурным коэффициентом, включение буферного каскада между гетеродином и выходными цепями, стабилизация напряжений питания, длительный прогрев прибора под током перед измерениями. Для повышения плавности регулировки и точности установки частоты управление конденсатором настройки гетеродина обычно осуществляют через верньерный механизм с большим замедлением (до 100-300 раз). Непосредственный отсчёт частоты по шкале конденсатора переменной ёмкости производят лишь в самых простых конструкциях; в большинстве приборов шкала выполняется равномерной с очень большим числом делений (до нескольких тысяч), а отсчёт по ней переводится в частоту при помощи таблиц или графиков. С целью уменьшения числа частотных поддиапазонов и повышения устойчивости частоты гетеродины обычно работают в узком участке сравнительно невысоких частот (при коэффициенте перекрытия, равном двум), а для измерений используются как основные частоты генерируемых колебаний, так и ряд их гармоник; возникновение последних обеспечивается подбором режима работы гетеродина или буферного усилителя. Например, в частотомере широкого применения типа Ч4-1 с общим диапазоном измеряемых частот от 125 кГц до 20 МГц гетеродин имеет два плавных поддиапазона основных частот: 125-250 кГц и 2-4 МГц. На первом поддиапазоне при использовании первой, второй, четвёртой и восьмой гармоник удаётся плавно перекрыть полосу частот 125-2000 кГц; на втором поддиапазоне при использовании первой, второй, четвёртой и частично пятой гармоник перекрывается полоса частот 2-20 МГц. Таким образом, каждому положению ручки настройки гетеродина соответствуют три или четыре рабочие частоты, значения которых могут быть определены по градуировочной таблице. Например, измерение частот 175, 350, 700 и 1400 кГц производится при одной и той же настройке гетеродина на основную частоту fг = 175 кГц. Многозначность частот настройки гетеродина создаёт возможность ошибки в установлении гармоники, с которой колебания измеряемой частоты fx создают биения. Поэтому, приступая к измерениям, необходимо знать приближённое значение частоты fx. Однако последнюю можно определить и расчётным путём при помощи самого гетеродинного частотомера. Предположим, что при изменении настройки гетеродина получены нулевые биения с частотой fx при двух соседних значениях основных частот fг1 и fг2 одного и того же поддиапазона гетеродина. Очевидно, что частота fx является одновременно гармоникой обеих этих частот, т. е. fx = n*fг1 = (n+1)*fг2. где n и (n + 1) - номера гармоник соответственно для основных частот fг1 и fг2 (при fг2 < fг1). Решая полученное равенство относительно n, находим n = fг2/(fг1-fг2). Следовательно, измеряемая частота fx = n*fг1 = fг1*fг2 / (fг1-fг2). Например, если нулевые биения получены при основных частотах fг1 ≈ 1650 кГц и fг2 ≈ 1500 кГц, то приближённо fx ≈ 1650*1500/(1650 - 1500) = 16500 кГц. При измерении частоты следует остерегаться ошибки, обусловленной возможностью возникновения биений между колебаниями гетеродина и гармоникой измеряемой частоты; поэтому измерения следует проводить при слабой связи между частотомером и исследуемым генератором. Погрешность измерений возрастает и при воздействии на прибор модулированных колебаний; в этом случае биения с основной (несущей) частотой будут прослушиваться на шумовом фоне биений с боковыми частотами. Гетеродинные частотомеры рассмотренного типа обеспечивают измерение высоких частот с погрешностью примерно 1%. Снижение погрешности измерений до 0,01% и менее достигается при дополнении частотомера кварцевым генератором, позволяющим перед началом измерений производить проверку и коррекцию шкалы гетеродина в ряде опорных точек. Развёрнутая функциональная схема гетеродинного частотомера повышенной точности представлена на рис. 15. Гетеродин имеет два поддиапазона, подгонка которых осуществляется подстроечными конденсаторами С3 и С4. Частота основных колебаний задаётся прямочастотным конденсатором переменной ёмкости C1. Уровень входного (выходного) сигнала регулируется потенциометром R. Кварцевый генератор создаёт богатые гармониками колебания, основная частота которых часто берётся равной 1 МГц. Выбор рода работы прибора производится без нарушения межкаскадных связей посредством включения или выключения питания отдельных компонентов. При установке переключателя В2 в положение 3 («Кварц») гетеродин выключен, а кварцевый генератор включён; при этом частотомер можно использовать как кварцевый калибратор для частотных измерений на гармониках генератора. В положении переключателя 1 («Гетеродин»), наоборот, кварцевый генератор выключен, а гетеродин включён. Это нормальный режим работы частотомера. Рис. 15. Функциональная схема гетеродинного частотомера повышенной точности Проверка шкалы частот гетеродина производится при установке переключателя В2 в положение 2 («Проверка»), когда одновременно включены и гетеродин, и генератор, колебания которых подводятся к детектору. При определённом соотношении частот или гармоник этих колебаний возникают звуковые биения, частота которых определяется формулой F = |m*fг - n*fк|, где fг и fк - основные частоты соответственно гетеродина и кварцевого генератора, а m и n - целые числа, отвечающие номерам взаимодействующих гармоник. Частота биений оказывается равной нулю (F = 0) для ряда частот диапазона гетеродина, удовлетворяющих условию fг =(n/m)*fк. Эти частоты называются опорными и специально выделяются в градуировочных таблицах. Найдём для примера опорные частоты (f0) диапазона гетеродина 2000-4000 кГц, если основная частота кварцевого генератора fк = 1000 кГц: при m = 1 и n = 2, 3 и 4 f0 = 2000, 3000 и 4000 кГц; при m = 2 и n = 5 и 7 f0 = 2500 и 3500 кГц; при m = 3 и n = 7, 8, 10 и 11 f0 = 2333, 2667, 3333 и 3667 кГц и т. д. Следует учитывать, что с возрастанием номеров взаимодействующих гармоник амплитуда биений уменьшается. Если градуировка шкалы гетеродина нарушена, то при установке его ручки настройки на одну из опорных частот и включении кварцевого генератора вместо нулевых биений создаются колебания звуковой частоты, которые после усиления прослушиваются в телефонах Тф. Для коррекции (калибровки) служит конденсатор С2 небольшой ёмкости, включённый параллельно основному конденсатору настройки С1: с его помощью перед началом измерений добиваются нулевых биений в ближайшей к измеряемой частоте опорной точке. Порядок настройки гетеродинного частотомера рассмотрим на следующем примере. Предположим, что требуется проверить правильность шкалы передатчика на частоте 10700 кГц. Обращаясь к градуировочной таблице частотомера, находим, что этой частоте соответствует основная частота 10700/4 = 2675 кГц. По таблице или шкале основных точек определяем, что ближайшая опорная частота равна 2667 кГц. Тогда по шкале конденсатора С1 устанавливаем частоту 2667 кГц и, поставив переключатель В2 в положение «Проверка» (2), корректором С2 добиваемся нулевых биений. Затем переключатель В2 ставим в положение «Гетеродин» (1) и, установив частоту гетеродина 2675 кГц, производим на этой частоте проверку шкалы передатчика. При измерении неизвестной частоты fx калибровка шкалы гетеродина производится в опорной точке, ближайшей к предполагаемому значению этой частоты, а затем в режиме измерения устанавливают нулевые биения регулировкой частоты гетеродина. При калибровке шкалы гетеродина, а также при измерении частоты генераторов модулятор должен быть выключен; при измерении частоты настройки приёмников не нужен низкочастотный узел прибора. Для выключения неиспользуемых компонентов частотомера служит переключатель В3. Гетеродинные частотомеры различных типов промышленного изготовления в совокупности перекрывают полосу измеряемых частот от 100 кГц до 80 ГГц при погрешности измерений в пределах +-(5*10-4...5*10-6). При очень высоких частотах получить нулевые биения трудно. Поэтому в частотомерах СВЧ иногда в качестве индикатора используют низкочастотный частотомер (например, ёмкостный); по нему определяют разностную частоту биений F, на размер которой вносится поправка в результаты измерений. Очень малая погрешность измерений в весьма широком диапазоне частот (от низких до сверхвысоких) достигается при сочетании двух частотомеров: гетеродинного и электронно-счётного. Последний, помимо самостоятельного использования в присущем ему диапазоне частот, может быть применён для точного измерения частоты настройки гетеродина при достижении нулевых биений; при этом оказываются излишними кварцевый генератор, градуировочные таблицы и графики.
|