Студопедия — Строение и функции наружного среднего и внутреннего уха.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Строение и функции наружного среднего и внутреннего уха.






 

Наружное ухо является звукоулавливающим аппаратом. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.

Звуковые колебания улавливаются ушными раковинами (у животных они могут поворачиваться к источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами — так называемый бинауральный слух — имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки — молоточек, наковальня и стремечко, а последнеe через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, — перилимфе.

Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке.

При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения.

Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде — при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

В среднем ухе расположены две мышцы: напрягающая барабанную перепонку и стременная. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Рефлекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды. Этим внутреннее ухо автоматически предохраняется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сработать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).

В перепончатом лабиринте волокна преддверно-улиткового нерва оканчиваются в нейроэпителиальных волосковых клетках (рецепторах), находящихся в определенных местах. Пять рецепторов относятся к вестибулярному анализатору, из них три расположены в ампулах полукружных каналов и называются ампулярными гребешками, а два находятся в мешочках и носят название пятен.

Один рецептор является слуховым, он располагается на основной мембране улитки и называется кортиевым (спиральным) органом. Во внутреннем ухе расположены рецепторы слухового и статокинетического анализаторов. Рецепторный (звуковоспринимающий) аппарат слухового анализатора находится в улитке и представлен волосковыми клетками спирального (кортиева) органа. Улитка и заключенный в ней рецепторный аппарат слухового анализатора называются кохлеарным аппаратом. Звуковые колебания, возникающие в воздухе, передаются через наружный слуховой проход, барабанную перепонку и цепь слуховых косточек на вестибулярное окно лабиринта, вызывают волнообразные перемещения перилимфы, которые, распространяясь, передаются на спиральный орган. Рецепторный аппарат статокинетического анализатора, расположенный в полукружных каналах и мешочках преддверия, носит название вестибулярного аппарата.

Проводниковый отдел слухового анализатора представлен перефирическим биполярным нейроном, расположенным в спиральном ганглии улитки (первый нейрон). Волокна слухового или (кохлеарного) нерва, образованные аксонами нейронов спирального ганглия, заканчиваются на клетках ядер кохлеарного комплекса продолговатого мозга (второй нейрон). Затем после частичного перекрестка волокна идут в медиальное коленчатое тело метаталамуса, где опять происходит переключение (третий нейрон), отсюда возбуждение поступает в кору (четвертый) нейрон. В медиальных (внутренних) коленчатых телах, а также в нижних буграх четверохолмия располагаются центры рефлекторных двигательных реакций, возникающих при действии звука.

 

Внутреннее ухо - полое костное образование в височной кости, разделенное на костные каналы и полости, содержащие рецепторный аппарат слухового и статокинетического (вестибулярного) анализаторов.

Внутреннее ухо находится в толще каменистой части височной кости и состоит из системы сообщающихся друг с другом костных каналов – костного лабиринта, в котором расположен перепончатый лабиринт. Очертания костного лабиринта почти полностью повторяют очертания перепончатого. Пространство между костным и перепончатым лабиринтом, называемое перилимфатическим, заполнено жидкостью - перилимфой, которая по составу сходна с цереброспинальной жидкостью. Перепончатый лабиринт погружен в перилимфу, он прикреплен к стенкам костного футляра соединительнотканными тяжами и заполнен жидкостью - эндолимфой, по составу несколько отличающейся от перилимфы. Перилимфатическое пространство связано с субарахноидальным узким костным каналом - водопроводом улитки. Эндолимфатическое пространство замкнуто, имеет слепое выпячивание, выходящее за пределы внутреннего уха и височной кости - водопровод преддверия. Последний заканчивается эндолимфатическим мешочком, заложенным в толще твердой мозговой оболочки на задней поверхности пирамиды височной кости.

Костный лабиринт состоит из трех отделов: преддверия, полукружных каналов и улитки. Преддверие образует центральную часть лабиринта. Кзади оно переходит в полукружные каналы, а кпереди - в улитку. Внутренняя стенка полости преддверия обращена к задней черепной ямке и составляет дно внутреннего слухового прохода. Ее поверхность делится небольшим костным гребнем на две части, одна из которых называется сферическим углублением, а другая - эллиптическим углублением. В сферическом углублении расположен перепончатый сферический мешочек, соединенный с улитковым ходом; в эллиптическом - эллиптический мешочек, куда впадают концы перепончатых полукружных каналов. В срединной стенке обоих углублений расположены группы мелких отверстий, предназначенных для веточек вестибулярной части преддверно-улиткового нерва. Наружная стенка преддверия имеет два окна - окно преддверия и окно улитки, обращенные к барабанной полости. Полукружные каналы расположены в трех почти перпендикулярных друг к другу плоскостях. По расположению в кости различают: верхний (фронтальный), или передний, задний (сагиттальный) и латеральный (горизонтальный) каналы.

Костная улитка представляет собой извитой канал, отходящий от преддверия; он спирально 2,5 раза огибает свою горизонтальную ось (костный стержень) и постепенно суживается к верхушке. Вокруг костного стержня спирально извивается узкая костная пластинка, к которой прочно прикреплена продолжающая ее соединительная перепонка - базальная мембрана, составляющая нижнюю стенку перепончатого канала (улиткового хода). Кроме того, от костной спиральной пластинки под острым углом латерально кверху отходит тонкая соединительнотканная перепонка - преддверная (вестибулярная) мембрана, называемая также рейсснеровой мембраной; она составляет верхнюю стенку улиткового хода. Образующееся между базальной и вестибулярной мембраной пространство с наружной стороны ограничено соединительнотканной пластинкой, прилегающей к костной стенке улитки. Это пространство называется улитковым ходом (протоком); оно заполнено эндолимфой. Кверху и книзу от него находятся перилимфатические пространства. Нижнее называется барабанной лестницей, верхнее - лестницей преддверия. Лестницы на верхушке улитки соединяются друг с другом отверстием улитки. Стержень улитки пронизан продольными кольцами, через которые проходят нервные волокна. По периферии стержня тянется спирально ее обвивающий канал, в нем помещаются нервные клетки, образующие спиральный узел улитки). К костному лабиринту из черепа ведет внутренний слуховой проход, в котором проходят преддверно-улитковый и лицевой нервы.

Перепончатый лабиринт состоит из двух мешочков преддверия, трех полукружных протоков, протока улитки, водопроводов преддверия и улитки. Все эти отделы перепончатого лабиринта представляют собой систему сообщающихся друг с другом образований.

Теория бегущей волны - в ответ на звуковой раздражитель внутри улитки возникает быстрая волна, распространяющаяся от основания до верхушки вдоль основной мембраны. Расстояние, которое проходит эта волна по мембране, определяется частотой колебания стремени. Волна от высоких звуков проходит меньшее расстояние и вызывает максимальную деформацию базилярной мембраны, а соответственно и максимальное раздражение волосковых клеток, преимущественно в области основного завитка улитки. Волна от низких звуков способна проходить на большие расстояния и таким образом вызывать деформацию мембраны по всей ее длине. Ощущение высоты звука определяется участком максимальной амплитуды колебаний базилярной мембраны. Чем выше звук, т.е. чем больше частота колебаний, воспринимаемых ухом, тем меньше длина колеблющегося столба жидкости в каналах улитки и тем ближе к основанию улитки и овальному окну максимальная амплитуда колебаний. При низкочастотных звуках максимальная амплитуда колебаний приходится на вершину улитки.

Кодирование частоты звука:

- Резонансная теория Г. Гелъмгольца (1863): учитывая, что базилярная пластинка имеет поперечные коллагеновые волокна, было предположено, что короткие волокна, расположенные ближе к овальному окну, резонируют в ответ на высокочастотные тоны, а длинные, расположенные ближе к геликотреме, резонируют в ответ на низкочастотные тоны. (Основным возражением против этой теории является то, что базилярная мембрана не натянута и резонанс её волокон невозможен.)- Гидродинамическая теория «бегущей волны» Г. Бекеши (1947). Колебание стремени вызывает в каналах улитки бегущую волну давления, которая направляется к геликотреме. В результате податливости рейснеровой мембраны и базилярной пластинки скорость распространения волны невелика и уменьшается по мере её распространения вплоть до нуля. Поскольку податливость базилярной пластинки нарастает по направлению к геликотреме, место пластинки, где волна полностью затухает (а перед этим имеет максимальную амплитуду) зависит от частоты звука: высокие частоты затухают ближе к овальному окну, низкие – к геликотреме. Частоты менее 800 Гц проходят вдоль всей улитки и затухают около геликотремы.

- В дальнейшем было показано наличие частотной избирательности рецепторов: каждая волосковая клетка имеет высокую чувствительность (низкий порог) к звукам одной частоты и более низкую к другим частотам.

Молекулярные механизмы трансдукции (рецепции) звука по пунктам:

- Волоски рецепторной волосковой клетки отгибаются в сторону, когда упираются в покровную мембрану, поднимаясь к ней вместе с базальной мембраной.

- Из-за этого растягивается клеточная мембрана волоска, и в ней открываются ионные каналы для натрия (Na+). Это механочувствительные ионные каналы (стретч-каналы), открываемые напрямую растяжением клеточной мембраны. Я предлагаю называть такие каналы в рецепторных клетках «стимул-управляемыми» ионными каналами, потому что их открывает стимул — раздражитель. Смотри: Ионные каналы мембраны

- Ионы Nа+ через открывшиеся для них каналы устремляются внутрь клетки.

- Они приносят с собой положительные электрические заряды (+) и вызывают уменьшение электроотрицательности внутри клетки. Это - процесс деполяризации. Электроотрицательность рецепторных волосковых клеток уменьшается, поляризация мембраны снижается, и это означает, что рецепторные клетки переходят в возбуждённое состояние.

- Теперь наступает важный момент, на который следует обратить особое внимание. В ответ на деполяризацию открываются уже другие каналы - потенциал-управляемые ионные каналы для Ca2+. Обратите внимание на то, что в рецепторных клетках в отличие от обычных нейронов появляются «новые действующие лица» - кальциевые каналы, чувствительные к деполяризации. При деполяризационном возбуждении эти каналы открываются и впускают в рецепторную клетку ионы кальция. Собственно, именно для этого, для введения в клетку ионов кальция, и нужна была деполяризация, полученная за счёт открытия стимул-зависимых ионных каналов.

- Итак, через открытые деполяризацией потенциал-зависимые ионные каналы Ca2+ поступает в клетку. Очень важно запомнить, что Cа2+ - это не только ион, но и биологически активное вещество, вторичный мессенджер. И ему предназначена важная роль в работе рецепторной клетки. Кальций связывается со специальным белком и побуждает пузырьки с медиатором двигаться к мембране и выбрасывать медиатор наружу. Без кальция ничего бы не вышло: медиатор не выделился бы.

- И вот теперь происходит самое главное: из рецепторной клетки под действием вошедшего в неё кальция начинает выделяться нейромедиатор. Нейромедиатор — это и есть вещество, передающее возбуждение на связанный с рецепторной волосковой клеткой биполярный нейрон. Как нейромедиатор передаст возбуждение? Он просто заставит биполярный нейрон породить нервный импульс.

Между эндолимфой и перилимфой постоянно существует электрический потенциал, равный примерно +80 мВ, с положительным зарядом внутри средней лестницы и отрицательным — снаружи. Этот потенциал называют эндокохлеарным потенциалом. Он генерируется постоянной секрецией положительных ионов калия в среднюю лестницу. Значение эндокохлеарного потенциала связано с тем, что верхушки волосковых клеток выступают через ретикулярную пластину и омываются эндолимфой средней лестницы, тогда как перилимфа омывает нижерасположенные тела волосковых клеток. Кроме того, волосковые клетки имеют отрицательный внутриклеточный потенциал, равный -70 мВ относительно перилимфы и -150 мВ относительно эндолимфы у верхних их поверхностей, где волоски проходят через ретикулярную мембрану и попадают в эндолимфу. Полагают, что этот высокий электрический потенциал на верхушках стереоцилий дополнительно повышает чувствительность клеток, увеличивая их способность реагировать на самый слабый звук.

 







Дата добавления: 2015-08-12; просмотров: 2977. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия