М – последовательности
Среди фазоманипулированных сигналов особое значение занимают сигналы, кодовые последовательности которых являются последовательностями максимальной длины или М -последовательностями. М – последовательности принадлежат к разряду двоичных линейных рекуррентных последовательностей и представляют собой набор N периодически повторяющихся двоичных символов. Причем каждый текущий символ dj образуется в результате сложения по модулю 2 некоторого числа m предыдущих символов, одни из которых умножаются на 1, а другие – на 0. Технически генератор М-последовательности строится в виде регистра (последовательно включенных триггеров) с отводами, с цепью обратной связи и с сумматором по модулю 2. Пример такого генератора приведен на рисунке 12. Умножение на а1…аm в (4) означает просто наличие или отсутствие отвода, т.е. связи соответствующего триггера (разряда регистра) с сумматором. В m-разрядном регистре максимальный период равен: Nm – 1. Величина m называется памятью последовательности. Если отводы выбраны произвольно, то не всегда на выходе генератора будет наблюдаться последовательность максимальной длины. Правило выбора отводов, позволяющее получить последовательность с периодом Nm-1, предполагает найти неприводимые примитивные полиномы степени m с коэффициентами, равными 0 и 1. Не равные нулю коэффициенты в полиномах определяют номера отводов в регистре. Так, при m=6 существует 3 примитивных многочлена: а6 а5 а4 а3 а2 а1 а0 p1 (x) = x 6 + x + 1 1 0 0 0 0 1 1 p2 (x) = x 6 + x 5 + x 2 + x + 1 1 1 0 0 1 1 1 p3 (x) = x 6 + x 5 + x 3 + x 2 + 1 1 1 0 1 1 0 1
На рисунке 12 реализован первый вариант.
Рисунок 12 - Генератор М-последовательности с периодом N = 26 – 1 = 63
Особенности автокорреляционной функции М-последовательности Наибольший интерес представляет нормированная автокорреляционная функция (АКФ). Различают два случая получения такой функции: в периодическом (ПАКФ) и апериодическом режимах. Периодическая АКФ имеет основной, равный единице, пик и ряд боковых выбросов, амплитуды которых 1/N. С ростом N ПАКФ приближается к идеальной, когда боковые пики становятся по сравнения с основным пренебрежимо малы.
Боковые пики АКФ в апериодическом режиме существенно больше боковых пиков ПАКФ. Среднеквадратичное значение боковых пиков (вычисленное через дисперсию) равно
1.10 Усеченные М-последовательности
Разбивая М-последовательность (полный период N) на сегменты длительности Nс, можно получить большое число ШПС, рассматривая каждый из сегментов как самостоятельный сигнал. Если сегменты не перекрываются, то их число равно n = N/(Nc-1). Таким образом, можно получить большое число псевдослучайных последовательностей. Автокорреляционные свойства таких последовательностей значительно хуже, чем у М-последовательности той же длительности и зависят от Nc. Установленно, что у 90% сегментов uб 3 /, а у 50% - 2 /.
|