Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способы решения основных задач динамики точки





В первой основной задаче заданы масса точки и ее закон движения в той или иной форме — векторной, координатной или естественной. Требуется найти неизвестную силу, действующую на движущуюся точку.

Рассмотрим решение этой задачи при координатном способе задания движения. Пусть Oxyz — система декартовых координатных осей; — заданные уравнения движения точки в этих осях. Неизвестную равнодействующую F сил, приложенных к точке, будем искать, определяя ее проекции на координатные оси.

Запишем дифференциальное уравнение движения точки:

Видно, что в этих -уравнениях уже содержится решение задачи в общем виде (для большей убедительности следует поменять местами правые и левые части написанных равенств).

В конкретной задаче, дифференцируя заданные функции два раза по времени и подставляя результат в дифференциальные уравнения движения, определяем проекции искомой равнодействующей. Далее, если это необходимо, определяем модуль силы и косинусы углов, образуемых силой с координатными осями.

Пример. Материальная точка М массы падает вертикально в среде с сопротивлением, причем уравнение движения имеет вид (рис. 4):

Определить величину силы сопротивления .

Решение. Движение точки происходит под действием двух сил — собственного веса и силы сопротивления - ; проекция равнодействующей на направление движения (ось у) будет равна . Составляем дифференциальное уравнение движения (при прямолинейном движении имеет место одно дифференциальное уравнение движения):

Рис. 4.

Находим , для чего дважды дифференцируем по времени заданный закон движения точки:

Подставляя в дифференциальное уравнение движения и разрешая его относительно неизвестной R, получаем:

Таким образом, сила сопротивления пропорциональна первой степени скорости с коэффициентом . Векторная формула для силы будет иметь вид

Во второй основной задаче задаются масса материальной точки и действующая сила (силы), а определению подлежат уравнения движения точки. В дифференциальных уравнениях движения точки

в этом случае правые части заданы, а искомыми являются функции времени , определяющие закон движения точки.

Для того чтобы найти эти функции, требуется выполнить интегрирование дифференциальных уравнений движения при определенных, заданных начальных условиях:

Обычно принимается .

Пример. Найти уравнения движения материальной точки в примере 1 на с. 9.

Решение. Дифференциальные уравнения движения, которые были получены выше на с. 10, запишем в виде:

Точка движется, оставаясь все время в плоскости , поэтому имеем не три, а только два дифференциальных уравнения движения. Для решения задачи требуется проинтегрировать эти уравнения при следующих начальных условиях:

Уравнения оказались независимыми, поэтому могут интегрироваться отдельно.

Решим вначале первое уравнение, которое в переменной можно представить в следующем виде:

Это дифференциальное уравнение первого порядка с разделяющимися переменными. После разделения переменных уравнение запишется так:

Теперь можно брать интегралы от обеих частей:

после чего, учитывая, что , получаем:

где — произвольная постоянная интегрирования.

Решаем это логарифмическое уравнение относительно :

Далее, заменяя выражением , снова приходим к дифференциальному уравнению с разделяющимися переменными

Снова разделяя переменные и интегрируя, получаем выражение

в котором — новая (вторая) постоянная интегрирования. (Заметим, что представляют собой разные формы записи одной и той же (первой) постоянной интегрирования).

Это и есть общее решение дифференциального уравнения . Для того чтобы найти уравнение движения точки, требуется найти постоянные интегрирования и подставить в это общее решение.

Постоянные интегрирования определяем по начальным условиям движения. Для этого начальные условия подставляем в выражения для , что дает нам два уравнения (конечных, не дифференциальных) для определения :

Из них находим:

Теперь все готово и остается лишь записать уравнение движения

Второе дифференциальное уравнение движения интегрируется по той же общей схеме, что и первое. После интегрирования, которое предлагаем читателю выполнить самостоятельно, получаем второе уравнение движения

 







Дата добавления: 2015-08-12; просмотров: 395. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия