Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Напряжение в грунтовых массивах, закон уплотнения





Основы напряженного состояния грунтов оснований

При определении напряжений в основаниях сооружений массива грунта обычно рассматривают как полупространство 0 ≤ z < ∞, ограниченное горизонтальной плоскостью z = 0. Грунт считают находящимся в сложном напряженно-деформированном состоянии и линейно-деформированном, поэтому для него справедливо основное положение закона Гука — линейность связи между напряжениями и деформациями.

Однако при действии внешних сил с давлениями, превышающими структурную прочность грунта, возникают не только упругие, но и значительно большей величины остаточные (пластические) деформации.

Напряжения в массивах грунтов возникают как под действием внешних нагрузок, так и от собственного веса грунта. Знание напряжений необходимо для расчетов деформаций грунтов, обусловливающих осадки и перемещения зданий и сооружений для оценки прочности, устойчивости грунтов и давления на ограждения.

Без учета распределения напряжений в грунте невозможно, например, рассчитать осадки насыпей, устоев мостов, акведуков, лотков, фундаментов искусственных и других сооружений.

Распределение напряжений в грунтовой толще зависит от следующих факторов: характера и режима нагружения массива, инженерно-геологических и гидрогеологических особенностей площадки строительства, состава и физико-механических свойств грунтов.

Давление от нагрузки, приложенной к поверхности грунтового массива, передается в грунте частицами или структурными агрегатами через точки контакта, распределяясь по мере углубления в грунт на все большую площадь.

Чтобы уяснить характер распределения напряжений, сделав допущение, представим себе грунт состоящим из одинаковых по форме и размерам твердых частиц (упрощающая модель), уложенных рядами друг на друге, как показано на рис. 6.1.

Рис. 6.1. Пример модели дискретной среды из одинаковых шаров: а — схема укладки; б — схема передачи (распределения) внешней сосредоточенной силы на частицы грунта

Как видно из рис. 6.1, на II ряд действует вес частиц I ряда, а на III ряд — частицы I и II ряда и т.д. Согласно рис. 6.1,б, внешняя сосредоточенная сила действует на одну частицу I ряда, которая в свою очередь воздействует на две частицы П.

Таким образом, с увеличением глубины количество твердых частиц, на которые передается давление, увеличивается и в свою очередь происходит рассеивание напряжений (см. рис. 6.1), т.е. напряжение от приложенной внешней силы распределяется в массиве под некоторым углом.

При оценке напряжений, действующих в грунтах, реальные силы, приложенные к отдельным грунтовым частицам, заменяют воображаемыми силами, распределенными по всему объему или сечению грунтового массива.

Величину этих сил, отнесенных к единице площади сечения массива, и принимают условно за величину напряжений в грунте.

Формирование напряжений в грунтовой толще происходит не мгновенно при приложении нагрузки, а может развиваться весьма длительное время. Это связано со скоростью проектирования деформаций и особенно сильно проявляется в глинистых грунтах, где процессы фильтрационной консолидации (консолидация — процесс уплотнения грунта по мере удаления воды из его пор) и ползучести развиваются очень медленно.

Изучение напряженного состояния грунта можно проводить по двум направлениям:

экспериментальным путем, измеряя непосредственно давления в грунте при помощи специального оборудования;

теоретическим путем, используя методы теории упругости, так как здесь мы имеем дело с объемным напряженным состоянием грунтов.

Работа грунта основания существенно отличается от работы материала строительной конструкции, сооружений и т.д. Отличия состоят в следующем:

грунты имеют малую прочность и большую деформируемость по сравнению с материалами конструкций; прочность их в десятки и сотни раз больше по сравнению с грунтом основания, а деформируемость, наоборот, меньше;

деформация грунта во времени при постоянной нагрузке возрастает (например, для глинистых грунтов процессы консолидации и ползучести) (рис. 6.2).

Рис. 6.2. Деформация грунта во времени
Как было сказано выше, деформация глинистых грунтов может длиться годами и даже десятки лет;

неоднородность грунтов и их свойств в основании фундаментов, а следовательно, прочности и деформируемости (понятие анизотропность), т.е. неодинаковые свойства грунтов в различных направлениях;

неоднородность напряжений в грунтовой толще в естественных условиях и сложность их изменений под действием внешней нагрузки;

различие закономерностей изменения напряженного состояния грунтов, однородных по составу, но при различной величине внешней нагрузки (график Герсеванова).

Работа оснований сооружений рассматривается применительно к плоской, пространственной, осесимметричной или контактной задаче в зависимости от принятой расчетной схемы.

По схеме плоской задачи рассчитываются ленточные фундаменты, основания подпорных стен, насыпей, дамб, а также фундаменты плит водосливных плотин, шлюзов, сухих доков и т.д.

Таким образом, по этой схеме напряжения распределяются в одной плоскости, а в перпендикулярном направлении они будут равны нулю или постоянны (рис. 6.3).

Рис. 6.3. Схема к плоской задаче

По схеме осевой симметрии (рис. 6.4) рассчитываются фундаменты водонапорных башен, доменных печей, фабричных труб, днища резервуаров, газгольдеров и т.д.

Рис. 6.4. Схема к осесимметричной задаче

По схеме пространственной задачи рассчитываются фундаменты под отдельные колонны и сплошные фундаментные плиты под сетку колонн.

 







Дата добавления: 2015-07-04; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия