quot;Молекулярная физика" для ОЗО и ОДО ФТФ КубГУ
Студенты, не выполнившие учебный план (не имеющие зачетов по решению задач и лабораторным работам), к экзамену по теоретическому курсу не допускаются. На экзамене разрешается пользоваться перечнем экзаменационных вопросов (отражающих содержание программы по данной дисциплине) и списком формул, приведенным на стр. 4 данного листа. Для разных специальностей выделяется разное количество учебных часов на изучение молекулярной физики. Поэтому из общего перечня экзаменационных вопросов, приведенного ниже, на экзамен выносятся лишь те вопросы, которые указаны в таблице:
Введение. Предмет молекулярной физики. Основные положения молекулярно-кинетической теории. Идеальный газ. Динамический, статистический и термодинамический методы описания физических систем. Моль. Молярная масса. Число Авогадро. Агрегатные состояния вещества и их основные признаки. (Основные положения выносятся на экзамен в качестве дополнительных вопросов). 1. Броуновское движение. Флуктуация. Расчет движения броуновской частицы. 2. Законы идеального газа. Вывод уравнения Клапейрона-Менделеева. Закон Авогадро. Изопроцессы (формулы и графики). Вывод закона Дальтона. Молярная масса смеси. 3. Идеальный газ во внешнем потенциальном поле: вывод барометрической формулы; вывод распределения Больцмана. Опыт Перрена по определению числа Авогадро. 4. Давление газа. Вывод основного уравнения молекулярно-кинетической теории идеального газа. Следствия. Формулы внутренней энергии идеального газа и средней квадратичной скорости. Распределение энергии по степеням свободы. 5. Распределение молекул газа по скоростям (распределение Максвелла). Физический смысл функции распределения. Условие нормировки. Наиболее вероятная скорость и значение функции распределения при этой скорости. Функция распределения для относительной скорости. Условия существования атмосферы планет. 6. Эффективные диаметр и сечение молекулы. Вывод формул для средней длины свободного пробега и числа столкновений. Оценить порядок этих величин. Вакуум. 7. Кинетические явления. Явления переноса. Диффузия в газах. Закон Фика. Расчет коэффициента самодиффузии. 8. Внутреннее трение. Формула Ньютона. Кинематическая и динамическая вязкости. Вязкость в жидкостях. Теплопроводность. Закон Фурье. Связь между коэффициентами переноса. 9. Термодинамический подход к описанию молекулярных явлений. Внутренняя энергия как функция состояния. Первое начало термодинамики и его различные формулировки. Вывод формулы для работы газа. Применение первого начала термодинамики к изопроцессам. 10. Классическая теория теплоемкости идеального газа. Молярная и удельная теплоемкости и связь между ними. Теплоемкости при постоянном давлении и объеме. Вывод уравнения Майера и показателя адиабаты. Физический смысл газовой постоянной. 11. Адиабатический процесс. Вывод трех формул для адиабаты. Сравнение адиабатического и изотермического процессов. Вывод формул для работы газа при адиабатическом процессе. 12. Политропический процесс. Частные случаи. Вывод формулы политропы. Вывод частных формул из уравнения политропы. 13. Обратимые и необратимые процессы. Понятие энтропии термодинамической системы. Свойства энтропии. Второе начало термодинамики. Формула Больцмана. Энтропия и беспорядок. Третье начало термодинамики. Расчет количества теплоты через энтропию. 14. Расчет изменения энтропии в процессах идеального газа (P, V, T, Q = const), при нагревании и плавлении. 15. Циклические процессы. Тепловая машина. Цикл Карно в координатах (P, V) и (T, S). Вывод формулы КПД. Теоремы Карно. Различные формулировки второго начала термодинамики. Холодильная машина. 16. Реальные газы. Изотермы реального газа. Насыщенный пар. Критическое состояние. Критические параметры. 17. Уравнение Ван-дер-Ваальса (В-д-В) для 1 моля и n молей. Физический смысл постоянных В-д-В. Изотермы В-д-В. Метастабильные состояния. Критические параметры и их связь с постоянными В-д-В. Внутренняя энергия газа В-д-В. 18. Конденсированное состояние – жидкость. Особенности жидкого состояния вещества. Особенности воды и возможность изменения ее свойств. (Основные положения выносятся на экзамен в качестве дополнительных вопросов). 19. Свободная энергия как функция состояния. Поверхностные явления в жидкостях. Три формулировки для коэффициента поверхностного натяжения. Опыт Плато. Отличия поверхности жидкости от резиновой пленки. Зависимость коэффициента поверхностного натяжения от ряда факторов. Поверхностно-активные вещества. 20. Условия равновесия на границе двух жидкостей и на границе жидкость – твердое тело. Краевой угол. Примеры смачивания и несмачивания. 21. Давление под искривленной поверхностью жидкости. Вывод формулы Лапласа. Частные случаи. Капилляры. Вывод формул поднятия (опускания) жидкости в цилиндрическом капилляре и между параллельными пластинками. 22. Агрегатные состояния вещества и фазовые превращения. Фаза. Фазовое равновесие. Фазовые переходы первого и второго рода (общая характеристика и отличительные свойства). Полиморфизм. Примеры. 23. Фазовые переходы первого рода. Условия кипения, плавления, сублимации. Уравнение Клапейрона – Клаузиуса. Тройная точка. Диаграмма состояний. 24. Эффект Джоуля – Томсона. Физическая сущность. Дифференциальный коэффициент Джоуля – Томсона. Дифференциальный и интегральный эффект. Энтальпия. Эффект Джоуля – Томсона в газе Ван-дер-Ваальса. Температура инверсии. 25. Методы получения низких температур и сжижения газов. Компрессионный холодильник. Методы Линде и Клода. Магнитное охлаждение. 26. Понятие температуры. Термодинамическая шкала температур. Температурные шкалы. Термометры и методы измерения температуры. 27. Твердые тела. Симметрия кристаллов. 4 типа кристаллов. Дефекты в кристаллах. Классическая теория теплоемкости твердых тел. Законы Дюлонга и Пти и Джоуля – Коппа. 28. Понятие о квантовой статистике. Принцип Паули. Распределения Бозе-Эйнштейна и Ферми-Дирака. Температура вырождения. Системы заряженных частиц: вырожденный электронный газ в металлах. Энергия Ферми. 29. Недостатки классической теории теплоемкости. Понятие о квантовой теории теплоемкости. Теории Эйнштейна и Дебая. Фононы.
|