Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление ИХ по РУ (3.4б)





n h (n), рассчитанная по (3.4б)
 
 
 
 
 

 

8. График ИХ (5 отсчетов) представлен на рис.3.10.

Рис. 3.10. Импульсная характеристика (к примеру 3.3)

9. Для построения карты нулей и полюсов необходимо вычислить нули и полюсы ПФ (3.1) по методике, приведенной в п. 1.4.6.

Комплексно-сопряженные полюсы вычислены в примере 3.1, п. 4:

.

Для определения нулей умножим числитель и знаменатель ПФ (3.1б) на получим

и найдем корни числителя

которые являются комплексно - сопряженными нулями

,

или в показательной форме

,

где

;

.

Карта нулей и полюсов изображена на рис. 3.11а; та же карта с необходимыми комментариями приведена на рис. 3.11б.

Рис. 3.11. Карта нулей и полюсов (к примеру 3.3)

10. См. п. 10 в примере 3.1.

11. Качественный анализ АЧХ и ФЧХ по карте нулей и полюсов выполняется на основе методики, изложенной в пп. 1.5.5–1.5.6.

В данном случае карта нулей и полюсов содержит два комплексно-сопряженных полюса (таких же, как в примерах 3.1 и 3.2) и два комплексно-сопряженных нуля, не лежащих на единичной окружности, поэтому относительно АЧХ можно сделать следующие выводы.

В основной полосе частот АЧХ звена 2-го порядка (3.5) является гладкой функцией, при этом:

- внутри основной полосы частот АЧХ имеет один максимум, расположенный приблизительно на частоте полюса ;

- внутри основной полосы частот АЧХ имеет один минимум, расположенный приблизительно на частоте нуля ;

- на границах основной полосы частот АЧХ имеет экстремумы: на частоте – минимум, а на частоте – максимум.

Относительно ФЧХ можно сказать, что она представляет собой непрерывную функцию, не имеющую ни на границах, ни внутри основной полосы частот скачков на p.

12. Экспресс-анализ АЧХ и ФЧХ выполняется по методике п. 1.5.5.

В данном примере следует вычислить значения АЧХ и ФЧХ в пяти точках:

а) в точке при

;

;

б) в точке при

;

;

в) в точке при

;

г) в точке максимума АЧХ , который находится приблизительно на частоте полюса

; .

Значения АЧХ и ФЧХ в этой точке, вычисленные по формулам (1.81)–(1. 82), равны:

; ;

д) в точке минимума АЧХ , который находится приблизительно на частоте нуля

; .

Значения АЧХ и ФЧХ в этой точке, вычисленные по формулам (1.81)–(1.82), равны:

; .

13. Графики нормированной АЧХ и ФЧХ, построенные на основе качественного анализа и экспресс-анализа, представлены на рис. 3.12.

Рис. 3.12. Графики нормированной АЧХ и ФЧХ (к примеру 3.3)

Рассмотренные выше примеры 3.1–3.3 являются типовыми, их внимательное изучение поможет студенту выполнить контрольную работу для любого варианта табл. 2.1.


Литература

1. Солонина А.И., Улахович Д.А. и др. Основы цифровой обработки сигналов: курс лекций. СПб: БХВ-Петербург, 2005.

2. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: Справочник. М.: Радио и связь, 1985.

3. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: учебное пособие для вузов. М.: Радио и связь, 1990.

4. Куприянов М.С., Матюшкин Б.Д. Цифровая обработка сигналов. СПб: Политехника, 1998.

5. Ланнэ А.А., Матюшкин Б.Д., Улахович Д.А. Основы цифровой обработки сигналов: учебное пособие / ВАС. СПб, 1995.

6. Солонина А.И., Улахович Д.А., Яковлев Л.А. Алгоритмы и процессоры обработки сигналов. СПб: БХВ-Петербург, 2001.

7. Солонина А.И., Улахович Д.А., Яковлев Л.А. Цифровые процессоры обработки сигналов фирмы Motorola. СПб: БХВ-Петербург, 2000.

 








Дата добавления: 2015-08-12; просмотров: 1004. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия