Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие диагонализируемости линейного оператора





Определение: Линейный оператор j в R n, называется диагонализируемым, если в некотором базисе f его матрица имеет вид:

Теорема: (критерий диагонализируемости оператора)

Линейный оператор j в R n диагонализируем тогда и только тогда, когда существует базис в R n состоящий целиком из собственных векторов j.

Доказательство: Пусть оператор j - диагонализирован

Þfi – собственный вектор, отвечающий собственным значениям ci.

Доказательство: (в обратную сторону)

Пусть - базис в R n, - собственный вектор j, отвечающий собственным значениям li:

Собственные вектора образуют линейное подпространство размерности 1 в базисе в R n из собственных векторов, нет.

Теорема: (достаточные условия диагонализируемости оператора) Если число различных собственных значений линейного оператора равно n, то оператор диагонализируем:

Доказательство: . Пусть - собственный вектор j, отвечающий собственным значениям li - линейно независимы, так как в в R n n – максимальное число линейно независимых векторов Þ " Î R n линейных векторов через . По критерию диагонализируемости оператора, оператор диагонализируем.

 

 







Дата добавления: 2015-08-12; просмотров: 7659. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия