Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие диагонализируемости линейного оператора





Определение: Линейный оператор j в R n, называется диагонализируемым, если в некотором базисе f его матрица имеет вид:

Теорема: (критерий диагонализируемости оператора)

Линейный оператор j в R n диагонализируем тогда и только тогда, когда существует базис в R n состоящий целиком из собственных векторов j.

Доказательство: Пусть оператор j - диагонализирован

Þfi – собственный вектор, отвечающий собственным значениям ci.

Доказательство: (в обратную сторону)

Пусть - базис в R n, - собственный вектор j, отвечающий собственным значениям li:

Собственные вектора образуют линейное подпространство размерности 1 в базисе в R n из собственных векторов, нет.

Теорема: (достаточные условия диагонализируемости оператора) Если число различных собственных значений линейного оператора равно n, то оператор диагонализируем:

Доказательство: . Пусть - собственный вектор j, отвечающий собственным значениям li - линейно независимы, так как в в R n n – максимальное число линейно независимых векторов Þ " Î R n линейных векторов через . По критерию диагонализируемости оператора, оператор диагонализируем.

 

 







Дата добавления: 2015-08-12; просмотров: 7659. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия