Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 15





Тема: Однократная поперечная и продольная несимметрия

Цель лекции:Изучить теоретическую часть темы

Однократная поперечная несимметрия Поперечная несимметрия в произвольной точке трехфазной системы в общем виде может быть представлена присоединением в этой точке трех неодинаковых сопротивлений. Такой подход позволяет получить решение в общем виде, из которого затем вытекают решения для всех частных случаев. Но такой подход приводит к громоздким выражениям, поэтому считается значительно проще и нагляднее проводить решение для каждого частного случая, используя характеризующие его граничные условия.

В этом разделе рассмотрены три основных вида несимметричных ко­ротких замыканий (двухфазное, однофазное на землю и двухфазное на зем­лю), наиболее часто случающиеся в системах с заземленной нейтралью. В приводимых ниже выкладках предполагается, что рассматриваются только основные гармоники тока и напряжения, причем схемы отдельных последовательностей состоят только из реактивных сопротивлений, найдены ре­зультирующая ЭДС и результирующие реактивности .

При записи граничных условий примем, что фаза «А» находится в усло­виях, отличных от условий для двух остальных фаз, т.е. она является, как говорят, особой фазой. За положительное направление токов будем считать направление к месту короткого замыкания.

Для упрощения записи индекс вида короткого замыкания сохранен только при записи граничных условий и в окончательных результатах. Приняв за особую фазу «А», можно составить уравнения ЭДС и напряжений контура для соответствующих последовательностей:

 

 

Фазные токи и напряжения в месте короткого замыкания можно найти по формулам, полученным на основании

 


 

В девяти уравнениях имеется 12 неизвестных . Чтобы решить эту систему уравнений, необходимо составить еще три уравнения, вытекающие из граничных условий соответствующего вида несимметричного короткого замыкания.

 







Дата добавления: 2015-08-12; просмотров: 632. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия