Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приведение пространственной системы сил к данному центру.





Полученные выше результаты позволяют решить задачу о приведении любой системы сил к данному центру. Эта задача, решается с помощью теоремы о параллельном переносе силы. Для переноса действующей на абсолютно твердое тело силы из точки А (рис. 43, а) в точку О прикладываем в точке О силы = и = - . Тогда сила = окажется приложенной в точке О и к ней будет присо­единена пара (, ) с моментом , что можно показать еще так, как на рис. 43, б. При этом

Рис.43

Рассмотрим теперь твердое тело, на которое действует какая угодно система сил , ,…, (рис. 44, а). Выберем произволь­ную точку О за центр приведения и перенесем все силы системы в этот центр, присоединяя при этом соответствующие пары. Тогда на тело будет действовать система сил

= , = , …, = .

приложенных в центре О, и система пар, моменты которых будут равны

= (), = (), …, = (),

Силы, приложенные в точке О, заменяются одной силой , при­ложенной в той же точке. При этом или,

.

Чтобы сложить все полученные пары, надо геометрически сло­жить векторы моментов этих пар. В результате система пар заме­нится одной парой, момент которой или,

.

Как и в случае плоской системы, величина , равная геометри­ческой сумме всех сил, называется главным вектором системы; величина , равная геометрической сумме моментов всех сил отно­сительно центра О, называется главным моментом системы отно­сительно этого центра.

 

Рис.44

 

 

Таким образом мы доказали следующую теорему, любая система сил, действующих на абсолютно твердое тело, при приведении к произвольно взятому центру О заменяется одной силой , равной главному вектору системы и приложенной в центре приведения О, и одной парой с моментом , равным главному моменту системы относительно центра О (рис. 36, б).

Векторы и обычно определяют аналитически, т.е. по их проекциям на оси координат.

Выражения для R x, R y, R z нам известны. Проекции век­тора на оси координат будем обозначать M x, M y, M z. По тео­реме о проекциях суммы векторов на ось будет или, . Аналогично находятся величины M y и M z.

Окончательно для определения проекций главного вектора и главного момента получаем формулы:

 







Дата добавления: 2015-08-12; просмотров: 547. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия