Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Диффузия газов через аэрогематический барьер





 

В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2и СО2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров.

Диффузия газов через альвеолярно-капиллярную мембрану лег­ких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связы­вание газов в крови легочных капилляров, объем которой составляет 80—150 мл, при толщине слоя крови в капиллярах всего 5—8 мкм и скорости кровотока около 0,1 мм*с-1. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты.

Значительным препятствием на пути диффузии О2является мем­брана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов (рис. 8.6).

Общие закономерности процесса диффузии могут быть выражены в соответствии с законом Фика следующей формулой:

 

M/t=ΔP/XCKα;

где М — количество газа, t — время, M/t — скорость диффузии, ΔР — разница парциального давления газа в двух точках, X — расстояние между этими точками, С — поверхность газообмена, К — коэффициент диффузии, α;— коэффициент растворимости газа.

В легких ΔР является градиентом давлений газа в альвеолах и в крови легочных капилляров. Проницаемость альвеолярно-капиллярной мембраны прямо пропорциональна площади контакта между функционирующими альвеолами и капиллярами (С), коэффициен­там диффузии и растворимости (К и α;).

Анатомо-физиологическая структура легких создает исключи­тельно благоприятные условия для газообмена: дыхательная зона каждого легкого содержит около 300 млн. альвеол и приблизительно аналогичное число капилляров, имеет площадь 40—140 м2, при толщине аэрогематического барьера всего 0,3—1,2 мкм.

Особенности диффузии газов через аэрогематический барьер ко­личественно характеризуются через диффузионную способность лег­ких. Диффузионную способность легких, например для Ог, можно определить по формуле:

 

DLo2=Vo2/(Pao2-P α;o2) мл•мин.

где DLo2 — диффузионная способность легких, Vo2 — количество потребляемого кислорода, РАо2 и Рао2 — парциальное давление и напряжение кислорода соответственно в альвеолярном воздухе и в артериальной крови.

Для Ог диффузионная способность легких — это объем газа, переносимого из альвеол в кровь в минуту при градиенте альвеолярно-капиллярного давления газа 1 мм рт.ст. Согласно закону Фика, диффузионная способность мембраны аэрогематического барь­ера обратно пропорциональна ее толщине и молекулярной массе газа и прямо пропорциональна площади мембраны и в особенности коэффициенту растворимости О2 и СО2в жидком слое альвеолярно-капиллярной мембраны.

 

Рис. 8.6. Аэрогематический барьер. 1 — сурфактант; 2 — эпителий альвеол; 3 — интерстициальное пространство; 4 — эндотелий капилляров; 5 — плазма крови; 6 — эритроцит.  

 

Содержание газов в альвеолярном воздухе

 

Ранее (см. табл. 8.1) было указано парциальное давление газов в альвеолярной газовой смеси, которое поддерживается на достаточно постоянном уровне, несмотря на возможные изменения режима легочной вентиляции. Потребление кислорода (Vo2) отражает ин­тенсивность клеточного метаболизма. В стационарных условиях величина. Vo2 измеренная в выдыхаемом воздухе, в целом соответ­ствует клеточному Vqj. Конечным продуктом метаболизма является СО2 (Vco2). Отношение образующегося в результате окисления СО2 к количеству потребляемого в организме О2, т. е. Vco2/Vo2 назы­вается дыхательным коэффициентом.

В условиях покоя в организме за минуту потребляется в среднем 250 мл О2 и выделяется около 230 мл СО2.

Из всего О2 вдыхаемого воздуха (21 % от всего объема) в кровь через аэрогематический барьер в легких поступает только 1/3. Нор­мальное парциальное давление газов в альвеолярном воздухе поддер­живается в том случае, если легочная вентиляция равна 25-кратной величине потребляемого О2. Другим обязательным условием поддер­жания нормальной концентрации газов в альвеолярном воздухе явля­ется оптимальное отношение альвеолярной вентиляции к сердечному дебиту (Q): Va/Q, которое обычно соответствует 0,8—1,0. Для газо­обмена в легких подобное отношение является оптимальным. Различ­ные зоны легких не представляют собой идеальную модель для под­держания оптимального отношения Va/Q, поскольку альвеолы нерав­номерно вентилируются воздухом и перфузируются кровью.

Для поддержания определенного состава альвеолярного воздуха важна величина альвеолярной вентиляции и ее отношение к уровню метаболизма, т. е. количеству потребляемого О2 и выделяемого СО2. При любом переходном состоянии (например, начало работы и др.) необходимо время для становления оптимального состава альвео­лярного воздуха. Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку.

Состав альвеолярного воздуха измеряют во рту во вторую по­ловину фазы выдоха с помощью быстродействующих анализаторов. В физиологической практике используются масс-спектрометр, ко­торый позволяет определять количество любого дыхательного газа; инфракрасный анализатор СО2 и анализатор О2. Анализаторы не­прерывно регистрируют концентрацию газов в выдыхаемом воздухе.

 

8.5.3. Газообмен и транспорт О2

Транспорт О2 осуществляется в физически растворенном и хи­мически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Подсчитано, что физически растворенный О2 может поддерживать нормальное по­требление О2 в организме (250 мл*мин-1), если минутный объем кровообращения составит примерно 83 л*мин-1 в покое. Наиболее оптимальным является механизм транспорта О2 в химически свя­занном виде.

Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентраци­онного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают тер­мином «напряжение газов» и обозначают символами Ро2, Рсo2. Градиент О2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт.ст., является одним из важнейших, но не единственным, согласно закону Фика, факторов начальной стадии диффузии этого газа из альвеол в кровь.

Транспорт О2 начинается в капиллярах легких после его хими­ческого связывания с гемоглобином.

Гемоглобин (Нb) способен избирательно связывать О2 и образо­вывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изме­няются и он может выполнять свою функцию на протяжении дли­тельного времени.

Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 à НbО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 à Нb + О2) в зависимости от метаболических потребностей клеток организма.

Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кри­вой (рис. 8.7). Плато кривой диссоциации характерно для насы­щенной О2 (сатурированной) артериальной крови, а крутая нисхо­дящая часть кривой — венозной, или десатурированной, крови в тканях.

 

Рис. 8.7. Кривая диссоциация оксигемоглобина цельной крови. А — влияние изменения рН крови на сродство гемоглобина к O2; Б — влияние изменения температуры на сродство гемоглобина к О2. Кривые 1—6 соответствуют температуре 0, 10, 20, 30, 38 и 43 °С.  

 

 

На сродство кислорода к гемоглобину влияют различные мета­болические факторы, что выражается в виде смещения кривой дис­социации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2) (см. рис. 8.7, А). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного со­держания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».

Рост температуры уменьшает сродство гемоглобина к О2. В ра­ботающих мышцах увеличение температуры способствует освобож­дению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации окси­гемоглобина (см. рис. 8.7, Б).

Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрацион­ному градиенту поступает из крови тканевых капилляров в ткани организма.

Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2.

Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемо­глобина, 1 г которого связывает 1,36—1,34 мл О2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1*кПа-1.

Обмен О2между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количе­ство О2, отданного при прохождении крови через тканевые капил­ляры, отнесенное к кислородной емкости крови.

С другой стороны, известно, что при напряжении О2 в артери­альной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).

8.5.4. Газообмен и транспорт СО2

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5—10%); 2) из гидрокарбонатов (80—90%); 3) из карбаминовых соединений эритроцитов (5—15%), которые способны диссоцииро­вать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

В венозной крови, притекающей к капиллярам легких, напря­жение СО2 составляет в среднем 46 мм рт.ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст. (5,3 кПа), что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.

Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы (О — С — О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО2. Кроме того, в альвеолы легких диффундирует СО2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.

Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы.

В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.

Диффузия СО2 из тканей в кровь. Обмен СО2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО3- через мембрану эрит­роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов (рис. 8.8).

 

Рис. 8.8. Участие эритроцитов в обмене О2 и СО2 в тканях и в легких.  

 

В ходе газообмена СО2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты нач­нут поступать из плазмы дополнительно ионы С1- Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.

Карбаминовый комплекс СО2 с гемоглобином образуется в ре­зультате реакции СО2 с радикалом NH2 глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство Нb к О2. Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение О2 из оксигемоглобина при высокой концентрации СО2 (эффект Бора). С другой стороны, связывание О2 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена).

Каждая реакция в настоящее время хорошо изучена. Например, полупериод обмена С1-и НСО3- равен 0,11—0,16 с при 37 oС. В ус­ловиях in vitro образование молекулярного СО2 из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:

СО22Оß> H2СО3 ß> H++НСО3-

Процесс выведения СО2 из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный СО2 легче проникает через биологические мембраны, чем О2. По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбо­ната. Яды, которые ограничивают транспорт О2 (такие как СО, метгемоглобинобразующие субстанции — нитриты, метиленовый си­ний, ферроцианиды и др.) не действуют на транспорт СО2. Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекуляр­ного СО2. Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О2. По этой причине нарушение транспорта О2 наступает в организме гораздо чаще и быстрее, чем нарушения газообмена СО2. Тем не менее при некоторых заболе­ваниях высокое содержание СО2 и ацидоз могут быть причиной смерти.

Измерение напряжения О2 и СО2 в артериальной или смешанной венозной крови производят полярографическими методами с исполь­зованием очень небольшого количества крови. Количество газов в крови измеряют после их полного извлечения из пробы крови, взятой для анализа.

Такие исследования выполняют с помощью манометрических приборов типа аппарата Ван-Слайка, или гемоалкариметра (необ­ходимо 0,5—2,0 мл крови) или на микроманометре Холандера (не­обходимо около 50 мкл крови).

 







Дата добавления: 2015-08-12; просмотров: 5538. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия