Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы зонной теории твердых тел. Распределение Ферми-Дирака.





В процессе образования твердого тела электронные энергетические уровни отдельных атомов из-за взаимодействия электронов смещаются и образуют энергетические полосы (разрешенные зоны), чередующиеся с уровнями энергий, значений которых электроны принимать не могут (запрещенные зоны). Энергетическая ширина как разрешенной так и запрещенной зон имеет порядок ~10-19 Дж. Энергетический зазор между отдельными уровнями разрешенных зон составляет ~10-41 Дж, поэтому обычно считают, что энергетический спектр электронов внутри разрешенной зоны практически непрерывен. Наиболее сильно расщепляются энергетические уровни валентных электронов, образуя так называемые валентную зону (ВЗ) и зону проводимости (ЗП).

Вероятность того, что осотояние с энергией Е при температуре Т занято электроном, определяется, как известно, функцией Ферми – Дирака:

 

(2.1)

 

Величину EF называют энергией Ферми (уровнем Ферми). Легко видеть, что при Т=0 К функция - если Е<ЕF; и равна нулю – если Е>ЕF. График этой функции изображен на рис. 2. При любой другой температуре энергия Ферми совпадает с энергией того уровня, вероятность заполнения которого равна 0,5. Если бы энергетические уровни в зоне были распределены равномерно то, число электронов, имеющих энергию Еi в небольшом интервале dE, определялось бы из функции распределения (2.1). Однако вблизи дна зоны проводимости энергетические уровни расположены реже, чем в верхней её части. Распределение энергетических уровней характеризуют функцией D(E) – функцией плотности энергетических состояний.

 

 
 


Рис. 2

 

С хорошим приближением можно считать, что D(E) имеет вид:

 

(2.2)

 

где m* - эффективная масса электрона, EC – энергия, соответствующая дну зоны проводимости. Плотность заполнения электронами энергетической зоны описывается, таким образом, следующей формулой:

(2.2а)

Как видно из (2.1) и рис. 2 вероятность нахождения частицы на уровне с энергией EF всегда равна при всех температурах. В то же время по мере роста температуры вероятность появления частиц выше уровня Ферми возрастает. При температурах отличных от нуля, если E - EF > kT, то функция Ферми-Дирака хорошо представляется экспоненциальной зависимостью (область в квадрате на рис. 2). Соответствующее распределение называется распределением Больцмана:

(2.3)

Используя сделанные допущения, возможно рассчитать количество электронов находящихся в заданном энергетическом интервале ΔE = E2 -E1:

(2.4)

где D(E) – распределение плотности энергетических состояний по энергиям, ω(E) – вероятность нахождения электрона на уровне с энергией E,

В качестве примера на рис. 2.1 показано, как используя функцию распределения ω(E) и функцию плотности состояния (D(E)~E1/2) определить распределение электронов по энергиям в металле или вырожденном полупроводнике.

 
 
D(E)


ω(E)
EF
EF
EF

 

Рис. 2.1. Схема расчета распределения электронов по энергиям в металле (или вырожденном полупроводнике) при использовании зависимостей D(E), ω(E); n(E)=D(E)ω(E)

 

На рис. 2.1 (нижний график) показано распределение электронов характерное для металлов или вырожденных полупроводников, т.е полупроводников имеющих настолько высокую концентрацию примесей, что в них уровень Ферми попадает в разрешенную зону и их проводимость становится близкой к металлической. Из распределения рис. 2 можно сделать один важный вывод, то в проводимости металлов могут участвовать не все электроны, а только те энергия которых лежат вблизи уровня Ферми (в объемном случае вблизи поверхности Ферми). Действительно, в электрическом поле электрон приобретает энергию, следовательно, он должен перемещаться на уровень расположенный выше его начального состояния, а сделать это возможно только в том случае, если лежащий над ним уровень не занят (запрет Паули), такая ситуация имеет место только для электронов расположенных в энергетической области непосредственно примыкающей к уровню Ферми.

 








Дата добавления: 2015-08-12; просмотров: 1782. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия