Особенности эксперимента.
![]() ![]() ![]() ![]() ![]() Снятие ВАХ ТД отличается рядом особенностей, обусловленных отрицательным динамическим сопротивлением диода на падающем участке характеристики от Для понимания особенности изменения ВАХ ТД рассмотрим схему из последовательно соединённых ТД и резистора
Точка пересечения нагрузочной прямой (3.2) и ВАХ показывают ток и напряжение на диоде при данном внешнем напряжении
Заметим, что при увеличении
Лабораторная установка ФКЛ-5 позволяет снять ВАХ туннельного диода по точкам (аналогично схеме рис. 6 а) с одновременным получением ВАХ на
Пилообразный сигнал с выхода Генератора Линейно Изменяющегося Напряжения (ГЛИН) G подается на исследуемый полупроводниковый туннельный диод через балластное сопротивление. Таким образом, между анодом и катодом диода создаётся ускоряющее напряжение, линейно меняющееся во времени – создается развёртка во времени по оси X осциллографа, а, так как напряжение Uанод-катод пропорционально времени t (Ua-к~kt), то развертка по времени есть развёртка по напряжению Uанод-катод=Uдиода. С резистора Rбалл. снимается сигнал, пропорциональный току I. диода. В результате получаем на экране осциллографа вольт-амперную характеристику диода I=I(U). Плавная регулировка выходного напряжения генератора осуществляется
переменным резистором R. Измерение амплитудного
значения напряжения на диоде и амплитудного значения тока при данном напряжении производится при помощи встроенного цифрового комбинированного «ИЗМЕРИТЕЛЬНОГО ПРИБОРА». Таким образом, вольтметр и амперметр показывают фактически значение напряжения и тока в крайней правой точке характеристики диода (рис. 6 б, рис. 8). Так как цифровой вольтметр на ЖКД индикаторе всегда показывает значение напряжения в крайней правой точке характеристики, то для калибровки оси X (при необходимости) достаточно воспользоваться следующей формулой: где Для начала эксперимента выберите многофункциональной кнопкой «РЕЖИМ РАБОТЫ. ВЫБОР/ESC» исследуемый образец (переведите курсор на ЖКД дисплее в соответствующее положение), и начните опыт, нажав клавишу «РЕЖИМ РАБОТЫ. ВХОД». Выход из эксперимента и переход в главное меню выбора образца осуществляется многофункциональной кнопкой «РЕЖИМ РАБОТЫ. ВЫБОР/ESC» Исследуемые образцы: SAMPLE1=1И305; SAMPLE2=1И104.
1. Изучить теорию туннельного эффекта для прямоугольного потенциального барьера, ознакомиться с теоретическими сведениями, изложенными в данном методическом руководстве. 2. Оценить энергию Ферми в материале туннельного диода исходя из следующих представлений. При Т=0 К функция Ферми (2.1) Используя выражение (2.2) для функции D(E) найдем:
Откуда получаем выражение для энергии Ферми EF, которая отсчитывается от энергии дна зоны проводимости ЕС:
При расчетах следует брать типичное значение концентрации электронов и дырок n~3∙1026 м-3. В качестве эффективной массы электрона
3. Найти энергию Em, соответствующую максимуму функции распределения электронов в зоне проводимости. Это можно сделать, исследовав на экстремум функцию (2.2а). Этот анализ довольно трудоемок, поэтому здесь приводим сразу конечный результат:
4. Оценить значения Umax и Umin вольт – амперной характеристики туннельного диода с помощью формул:
![]()
|