Фазы митоза
Митоз состоит из четырех фаз: профазы, метафазы, анафазы и телофазы. Профаза является фазой подготовки к разделению хромосом (см. рис. 4). Происходит разборка ядрышка, оно исчезает. Хроматиновые нити укорачиваются и утолщаются, происходит процесс, называемый конденсацией хроматина. В результате образуются хромосомы, каждая из которых состоит из двух сестринских хроматид. Каждая из хроматид содержит всегда одну молекулу ДНК, при этом молекулы ДНК сестринских хроматид — это две точные копии, образовавшиеся в результате репликации ДНК (поэтому они и называются сестринскими). Сестринские хроматиды остаются соединенными только в области центромеры, образуя Х-образную структуру. Два клеточных центра расходятся к противоположным концам клетки, образуя полюса веретена деления. От каждого из них начинают расти микротрубочки. Встречаясь с хромосомами, микротрубочки прикрепляются к их центромерам, причем к каждой хромосоме прикрепляется две микротрубочки: одна от одного полюса, а вторая — от другого. Микротрубочки, которые не прикрепились к хромосомам, соединяются между собой в середине клетки. Образуется структура, называемая веретеном деления, а микротрубочки называются нитями веретена. Последним событием профазы является распад ядерной оболочки на фрагменты (пузырьки). Рис. 4 Затем наступает метафаза (см. рис. 5). За счет изменения длины нитей веретена хромосомы перемещаются в среднюю часть клетки, образуя экватор деления. В это время они все находятся в одной плоскости, что позволяет провести исследование их набора, формы и размеров. Приводимые обычно фотографии хромосомных наборов делаются именно на этой стадии, образуя так называемую метафазную пластинку. Хромосомы находятся в экваториальной плоскости довольно длительное время. Как показано в последние годы, в это время происходит смена белков в центромерах хромосом, что позволяет в дальнейшем разделить их. Рис. 5 За метафазой наступает анафаза (см. рис. 6). Центромеры сестринских хроматид разделяются, нити веретена укорачиваются, в результате дочерние хроматиды расходятся к противоположным полюсам. Такое движение продолжается до тех пор, пока хроматиды, ставшие самостоятельными хромосомами, не достигнут полюсов. В результате у каждого полюса деления образуется полный набор хромосом, характерный для данного вида. Рис. 6 Митоз завершается телофазой, в которой восстанавливается исходная структура ядер (см. рис. 7). Вокруг каждого набора хромосом у полюсов деления формируется новая ядерная оболочка. После этого начинается удлинение и уменьшение толщины хромосом, называемое деконденсацией хроматина. В результате хромосомы превращаются в хроматиновые нити. Формируются новые ядрышки. На этом завершается митоз и начинается деление клетки — цитокинез. Рис. 7 Он происходит по-разному у животных и растений. У животных в средней части образуется бороздка, опоясывающая клетку, — экваториальная борозда. В этой области перетяжки формируется сократимое кольцо из белков актина и миозина (подобно мышечным волокнам). Борозда постепенно углубляется, образуя перетяжку, которая в конце концов делит клетку на две равные части. У растений жесткая клеточная стенка не позволяет образовать перетяжку. После расхождения хромосом и образования ядер к нитям веретена прикрепляются мембранные пузырьки, находящиеся в цитоплазме. Они перемещаются по нитям веретена на экватор клетки. Там происходит вскрытие пузырьков (см. рис. 8). Их содержимое застывает, образуя срединную пластинку (фрагмопласт), а мембраны пузырьков формируют с двух сторон от нее две новые клеточные мембраны. Эти мембраны затем синтезируют целлюлозные волокна, формирующие две новые клеточные стенки и склеенные срединной пластинкой. Рис. 8 Результатом митоза является образование двух новых генетически идентичных клеток. У одноклеточных эукариот митоз является способом бесполого размножения. У многоклеточных митоз, приводящий к увеличению числа клеток, является основой роста. Кроме того, после митоза одна из образующихся клеток может начать превращение в специализированную клетку, выполняющую новую функцию. Такой процесс называется дифференцировкой клеток и лежит в основе процессов развития многоклеточных организмов.
|