Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие сведения. Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости





 

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Наиболее простыми являются гармонические колебания, при которых какая-либо физическая величина, характеризующая колебание, изменяется со временем по закону синуса или косинуса. Примером может служить колебание маленького шарика, подвешенного на длинной нити.

Если пренебречь силой трения, то величина смещения шарика из положения равновесия изменяется по закону

 

,

или (1)

,

 

где A - амплитуда колебания; w0 - циклическая частота; a1, a2 - начальные фазы колебания.

Колебательные процессы будут незатухающими, если они совершаются под действием только упругой или квазиупругой силы. В любой реальной колебательной системе всегда существует сила сопротивления, поэтому все реальные колебательные процессы затухающие.

Отклоним шарик, подвешенный на нити, из положения равновесия (рис. 1). Применив к нему второй закон Ньютона, имеем

 

, (2)

или

,

где m - масса шарика, a - ускорение, - квазиупругая сила, - сила сопротивления.

При малых колебаниях F 1 = - kx, а F C = - ;, где x - смещение, r - коэффициент сопротивления. Введем следующие обозначения:

 

. (3)

 

Тогда уравнение (2) примет вид:

 

. (4)

 

Уравнение (4) называется уравнением динамики затухающих гармонических колебаний, где b - коэффициент затухания.

Если затухание невелико (b <;w0), то решением уравнения (4) является выражение

 

. (5)

 

Здесь e - основание натурального логарифма.

Графически это решение представлено на рис. 2. Амплитуда затухающих колебаний изменяется по экспоненциальному закону.

Следует отметить, что затухающие колебания не являются периодическими, т.к. через одинаковые промежутки времени состояние наблюдаемой системы в точности не повторяется. Однако эти колебания условно характеризуют частотой и периодом в том смысле, что колеблющаяся система проходит положение равновесия в одном и том же направлении через равные промежутки времени.

Частоту затухающих колебаний определим по формуле

 

,

где - частота собственных колебаний системы при отсутствии силы сопротивления.

Изучать затухающие колебания можно только при b<w0. При b>w0 колебания становятся апериодическими.

Отметим, что в данной работе период затухающих колебаний незначительно отличается от периода свободных колебаний, т.е. b<<w0.

Для характеристики быстроты затухания колебаний вводят величину, называемую логарифмическим декрементом затухания d, который числено равен натуральному логарифму отношения двух амплитудных значений изменяющийся величины, отстоящих по времени одно от другого на период:

 

. (6)

 

Выясним физический смысл этой характеристики.

Пусть за t секунд амплитуда колебаний уменьшится в e раз. Тогда из (6), зная, что lne = 1, имеем

 

bt = 1. (7)

 

Тогда из (6) с учетом (7) получим

 

, (8)

 

где Ne - число колебаний, совершенных системой за время t.

Из выражения (8) следует, что d есть величина, обратная числу колебаний Ne, совершенных системой за время, в течение которого амплитуда уменьшится в e раз. Время t называется временем релаксации.

Скорость затухания колебаний характеризуется также физической величиной, называемой добротностью Q, которая может быть определена как отношение максимального значения квазиупругой силы к максимальной силе сопротивления:

 

.

 

Максимальное значение квазиупругой силы F 1max = kA, где , (см. (3)).

Максимальное значение силы сопротивления пропорционально максимальной скорости F cmax = ru max, где umax = A w0 (см. (3)).

Тогда

.

 

Сделав замену ω0 = 2π/ T и учитывая (6), окончательно получим

 

. (9)

 

Из выражения (9) следует, что добротность колебательной системы тем выше, чем большее число колебаний успевает совершиться, прежде чем амплитуда уменьшится в e раз.

При слабом затухании добротность системы пропорциональна отношению энергии W, запасенной в системе, к убыли этой энергии Δ W за один период:

 

. 10

 

В этом заключается энергетический смысл добротности колебательной системы.

 







Дата добавления: 2015-08-12; просмотров: 781. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия