Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показатели работы отраслей





Производственное потребление Конечное потребление Валовой выпуск

Балансовый характер этой таблицы выражается в том, что при любом i = l,..., n должно выполняться соотношение

xi = xi 1 + xi 2 +...+ xin + y i, (1.1)

означающее, что валовой выпуск xi расходуется на производственное потребление, равное x i1 + xi 2 +...+ xin, и непроизводственное потребление, равное уi. Будем называть (1.1) соотношениями баланса. Для выпуска любого объёма хj продукции отрасли j необходимо затратить продукцию отрасли i в качестве aij x j, где аij - постоянный коэффициент. Проще говоря, материальные издержки пропорциональны объёму производимой продукции. Это допущение постулирует, как говорят, линейность существующей технологии.

xij = aijxj (i, j = 1,..., n). (1.2)

Коэффициенты аij называют коэффициентами прямых затрат (коэффициент материалоемкости).

В предположении линейности соотношения (1.1) принимают вид:

x 1 = a 11 x 1 + a 12 x 2 +... + a 1 n xn + y 1

x 2 = a 21 x 1 + a 22 x 2 +... + a 2 n xn + y 2

.........................................

xn = an 1 x 1 + an 2 x 2 +... + ann xn + yn,

или, в матричной записи,

, (1.3)

где

Вектор называется вектором валового выпуска, вектор - вектором конечного потребления, а матрица А - матрицей прямых затрат. Соотношение (1.3) называется уравнением линейного межотраслевого баланса. Вместе с изложенной интерпретацией матрицы А и векторов и это соотношение называют также моделью Леонтьева.

Уравнения межотраслевого баланса можно использовать для целей планирования. В этом случае задача ставится так: для предстоящего планового периода [ T 0, T 1] задается вектор конечного потребления. Требуется определить вектор валового выпуска.

При этом нужно иметь в виду следующие особенности системы (1.3):

 

1. Все компоненты матрицы А и вектора неотрицательны (это вытекает из экономического смысла А и ). Для краткости будем говорить о неотрицательности самой матрицы А и вектора и записывать это так: .

2. Все компоненты вектора также должны быть неотрицательными:

 

Из матричного уравнения (1.3) сразу следует:

 

x = (E - A)-1y (1.4)

 

 

3. Решение задачи

 

 

 

4. Анализ результатов

 

Матрица прямых затрат продуктивна, так как каждое значение не должно превосходить 1 (0.56<1, 0.93<1, 0.92<1, 0.79<1).

Валовый продукт, соответствующий увеличению конечного продукта на 2,5%, был рассчитан.

 







Дата добавления: 2015-09-04; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия