Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткая характеристика радиационных аварий.





Расширяющееся внедрение источников ионизирующих излучений в промыш­ленность, в медицину и научные исследования, наличие на вооружении армий ядер­ного оружия, а также работа человека в космическом пространстве увеличивают чис­ло людей, подвергающихся воздействию ионизирующих излучений.

Несмотря на достаточно совершенные технические системы по обеспечению радиа­ционной безопасности персонала и населения, разработанные в последние годы, сохраня­ется определенная вероятность повторения крупномасштабных радиационных аварий.

На территории Российской Федерации в настоящее время функционирует по­рядка 400 «стационарных» радиационно опасных объектов (атомные электростанции, заводы по переработке ядерного топлива, хранилища радиоактивных отходов, ядер­ные объекты Министерства обороны России и др.). Не исключена возможность транспортных радиационных аварий (в том числе с ядерным оружием), локальных аварий, связанных с хищением и утерей различных приборов, работающих на основе радионуклидных источников, а также в результате использования радиоактивных ве­ществ в диверсионных целях.

Радиационная авария - событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных норматив­ными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неис­правностью оборудования, неправильными действиями персонала, стихийны­ми бедствиями или иными причинами.

Различают очаг аварии и зоны радиоактивного загрязнения местности.

Очаг аварии - территория разброса конструкционных материалов ава­рийных объектов и действия а-, β- и у-излучений.

Зона радиоактивного загрязнения - местность, на которой произошло выпадение радиоактивных веществ.

Типы радиационных аварий определяются используемыми в народном хозяй­стве источниками ионизирующего излучения, которые можно условно разделить на следующие группы: ядерные, радиоизотопные и создающие ионизирующее излуче­ние за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические). Такое деление достаточно условно, поскольку, например, атом­ные электростанции (АЭС) одновременно являются и ядерными, и радиоизотопными объектами. К чисто радиоизотопным объектам можно отнести, например, пункты за­хоронения радиоактивных отходов или радиоизотопные технологические медицин­ские облучательные установки.

Имеются также специальные технологии, связанные с уничтожением ядерных боеприпасов, снятием с эксплуатации исчерпавших эксплуатационный ресурс реак­торов, проводящимися в интересах народного хозяйства ядерными взрывами и др.

До аварии на Чернобыльской АЭС в апреле 1986г. значительные выбросы ра­дионуклидов происходили при двух авариях на реакторах: в Уиндскейле (Великобри­тания) в октябре 1957г. и на Тримайл Айленде (США) в марте 1979г.

Аварии на хранилищах радиоактивных отходов представляют большую опас­ность, так как они могут привести к длительному радиоактивному загрязнению об­ширных территорий высокотоксичными радионуклидами и вызвать необходимость широкомасштабного вмешательства.

Подобный аварийный выброс произошел 29 сентября 1957г. на комбинате «Ма­як» (Челябинск-40). Был загрязнен участок местности шириной 9км, длиной более 100км. След протянулся через Челябинскую, Свердловскую и Тюменскую области. Было эвакуировано 10 700 чел., проживающих на этой территории.

Ситуация, характерная для поверхностного хранения жидких радиоактивных от­ходов, возникла в 1967г. на хранилище в районе озера Карачай, когда в результате ветрового подъема высохших иловых отложений оказалась значительно загрязнена прилегающая территория.

Аварийная ситуация при глубинном захоронении жидких радиоактивных отхо­дов в подземные горизонты возможна при внезапном разрушении оголовка скважи­ны, находящейся под давлением.

В случае размыва и растворения пород пласта-коллектора агрессивными компо­нентами радиоактивных отходов, например, кислотами, увеличивается пористость по­род, что может приводить к утечке газообразных радиоактивных отходов. В этом случае переоблучению, как правило, может подвергнуться персонал хранилища.

При аварии на радиохимическом производстве радионуклидный состав и вели­чина аварийного выброса (сброса) существенно зависят от технологического участка процесса и участка радиохимического производства. Основной вклад в формирова­ние радиоактивного загрязнения местности в случае радиационной аварии на радио­химическом производстве могут вносить изотопы 90Sr, 134Cs, l37Cs, 238Pu, 239Pu, 240Pu, 241Pu, 241Am, 244Cm. Повышенный фон гамма-излучения на местности создают в ос­новном l34Cs, l37Cs.

На заводе по переработке радиационных отходов в Томске-7 6 апреля 1993г. произошла авария. След радиоактивного облака шириной 9-10 км распространился на 100-120км.

Аварии с радионуклидными источниками связаны с их использованием в про­мышленности, газо- и нефтедобыче, строительстве, исследовательских и медицин­ских учреждениях. Аварии с радиоактивными источниками могут происходить без их разгерметизации и с разгерметизацией. Характер радиационного воздействия оп­ределяется видом радиоактивного источника, пространственными и временными ус­ловиями облучения. При аварии с ампулированным источником переоблучению мо­жет подвергнуться ограниченное число лиц, имевших непосредственный контакт с радиоактивным источником, с преобладающей клиникой общего неравномерного об­лучения и местного (локального) радиационного поражения отдельных органов и тканей. В случае разгерметизации радиоактивного источника возможно радиоактив­ное загрязнение значительной территории (Гояния, Бразилия, 1987г.).

Особенностью аварии с радиоактивным источником является сложность уста­новления факта аварии. К сожалению, часто подобная авария устанавливается после регистрации тяжелого радиационного поражения.

При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы 239Рu и 241Аm с преобладанием внутреннего облучения за счет ингаляции. При пожаре возможен сценарий, когда основным поражающим фактором будет выделение оксида трития (молекулярного трития).

Возможность радиационной аварии на космических аппаратах обусловлена на­личием на их борту:

• радиоактивных изотопов в генераторах электрической и тепловой энергии, в различных контрольно-измерительных приборах и системах;

• ядерных бортовых электроэнергетических установок;

• ядерных установок в качестве двигательных систем.

Аварии при перевозке радиоактивных материалов также возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на норма­тивно-правовых документах, регламентирующих ее безопасность.

Распространенными в перевозках и наиболее опасными являются гексафторид урана и соединения плутония. Соединения долгоживущего (более 2000 лет!) плуто­ния (обычно диоксид плутония) представляют опасность из-за длительного α-излучения и высокой токсичности. Основным путем поступления аэрозоля диоксида плуто­ния является ингаляционный.

Примером сложной радиационной ситуации, связанной с переоблучением лю­дей и обширным радиоактивным загрязнением территории вследствие нарушения хранения радиоактивных веществ, может быть облучение l37Cs группы людей в горо­де Гояния (Бразилия). 12 сентября 1987г. два человека обнаружили ампулу с порош­ком l37Cs. В результате разноса порошка в городе образовалось 7 относительно боль­ших и до 50 мелких участков загрязнения. Загрязнению кожи и одежды, а также внутреннему облучению подверглись 249 чел., из числа которых у 129 развились ост­рые радиационные поражения средней и тяжелой степеней тяжести, и 4 чел. погибли от острой лучевой болезни.

Классы радиационных аварий связаны, прежде всего, с их масштабами. По границам распространения радиоактивных веществ и по возможным последствиям радиационные аварии подразделяются на локальные, местные, общие.

Локальная авария - это авария с выходом радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, техно­логических систем, зданий и сооружений в количествах, превышающих регла­ментированные для нормальной эксплуатации значения, при котором возмож­но облучение персонала, находящегося в данном здании или сооружении, в до­зах, превышающих допустимые.

Местная авария - это авария с выходом радиоактивных продуктов в пре­делах санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение персонала в дозах, превышающих допустимые.

Общая авария это авария с выходом радиоактивных продуктов за гра­ницу санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение населения и загрязнение окружающей среды выше установленных норм.

По техническим последствиям выделяются следующие виды радиационных аварий.

1. Проектная авария. Это предвиденные ситуации, то есть возможность воз­никновения такой аварии заложена в техническом проекте ядерной уста­новки. Она относительно легко устранима.

2. Запроектная авария - возможность такой аварии в техническом проекте
не предусмотрена, однако она может произойти.

3. Гипотетическая ядерная авария авария, последствия которой трудно предугадать.

4. Реальная авария - это состоявшаяся как проектная, так и запроектная авария. Практика показала, что реальной может стать и гипотетическая авария (в частности, на Чернобыльской АЭС).

Аварии могут быть без разрушения и с разрушением ядерного реактора.

Отдельно следует указать на возможность возникновения аварии реактора с раз­витием цепной ядерной реакции - активного аварийного взрыва, сопровождающего­ся не только выбросом радиоактивных веществ, но и мгновенным гамма-нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.

Международным агентством по атомной энергии (МАГАТЭ) в 1990г. была раз­работана и рекомендована универсальная шкала оценки тяжести и опасности аварий на АЭС. Классифицируемые шкалой события относятся только к ядерной или радиа­ционной безопасности. Шкала разделена на две части: нижняя охватывает уровни 1-3 и относится к инцидентам, а верхняя часть из четырех уровней (4-7) соответствует авариям. События, не являющиеся важными с точки зрения безопасности, интерпре­тируются как события нулевого уровня. Шкала является приблизительно логарифми­ческой. Так, ожидается, что число событий должно примерно в 10 раз уменьшаться для каждого более высокого уровня.

Характер и масштабы последствий радиационных аварий в значительной степе­ни зависят от вида (типа) ядерного энергетического реактора, характера его разруше­ния, а также метеоусловий в момент выброса радиоактивных веществ из поврежден­ного реактора.

Радиационная обстановка за пределами АЭС, на которой произошла авария, оп­ределяется характером радиоактивных выбросов из реактора (типом аварии), движением в атмосфере радиоактивного облака, величиной районов радиоактивного загряз­нения местности, составом радиоактивных веществ.

Так, например, при аварии на Чернобыльской АЭС в мае 1986г. в результате взрыва реактора четвертого энергоблока станции произошло частичное разрушение реакторного здания и кровли машинного зала. В реакторном зале возник пожар. Через пролом в зда­нии на территорию станции было выброшено значительное количество твердых материа­лов: обломков рабочих каналов, таблеток диоксида урана, кусков графита и обломков конструкций. Образовалось гидроаэрозольное облако с мощным радиационным действи­ем. Траектория перемещения этого облака прошла вблизи г. Припять вне населенных пунктов, первоначально в северном, а затем в западном направлениях.

По оценкам специалистов, всего в период с 26 апреля по 6 мая 1986г. из топли­ва высвободились все благородные газы, примерно 10-20% летучих радиоизотопов йода, цезия и теллура и 3-6% более стабильных радионуклидов бария, стронция, плу­тония, цезия и др.

Длительный характер выбросов, проникновение части аэрозолей в нижние слои тропосферы обусловили создание обширных зон радиоактивного загрязнения, выхо­дящих за пределы нашей страны. Сформировались значительные по площади зоны, внутри которых были превышены допустимые уровни загрязнения по наиболее ра-диационно опасным радионуклидам - 239Pu, 90Sr и 137Cs. Все это привело к радиоак­тивному загрязнению воды и пищевых продуктов (особенно молочных), во много раз превышающему не только фоновые, но и нормативные показатели. Заметное радио­активное загрязнение коснулось нескольких областей Белоруссии, Украины и Рос­сии, оно отмечалось также в Прибалтике, Австрии, ФРГ, Италии, Норвегии, Швеции, Польше, Румынии, Финляндии. Столь обширное загрязнение значительно осложнило организацию защиты населения от радиационного воздействия и проведение меро­приятий по ликвидации загрязнения.

Основной вклад в мощность дозы на загрязненных территориях внесли изотопы 137Cs и l34Cs (до 80% в 30-километровой зоне и почти 100% за ее пределами). Плот­ность радиоактивного загрязнения долгоживущими изотопами, в особенности l37Cs, была значительной и достигала от 15 до 100 Ки/км2.

Масштабы и степень загрязнения местности и воздуха определяют радиацион­ную обстановку.

Радиационная обстановка представляет собой совокупность условий, возни­кающих в результате загрязнения местности, приземного слоя воздуха и водоисточ­ников радиоактивными веществами (газами) и оказывающих влияние на аварийно-спасательные работы и жизнедеятельность населения.

Выявление наземной радиационной обстановки предусматривает определение мас­штабов и степени радиоактивного загрязнения местности и приземного слоя атмосферы.

Оценка наземной радиационной обстановки осуществляется с целью определе­ния степени влияния радиоактивного загрязнения на лиц, занятых в ликвидации по­следствий чрезвычайной ситуации, и населения.

Оценка радиационной обстановки может быть выполнена путем расчета с ис­пользованием формализованных документов и справочных таблиц (прогнозирова­ние), а также по данным разведки (оценка фактической обстановки).

К исходным данным для оценки радиационной обстановки при аварии на АЭС относятся: координаты реактора, его тип и мощность, время аварии и реальные ме­теоусловия, прежде всего направление и скорость ветра, облачность, температура воздуха и его вертикальная устойчивость, а также степень защиты людей от ионизи­рующего излучения.

При оценке фактической обстановки, кроме вышеупомянутых исходных дан­ных, обязательно учитывают данные измерения уровня ионизирующего излучения и степени радиоактивного загрязнения местности и объектов.

Метод оценки радиационной обстановки по данным радиационной разведки ис­пользуется после аварии на радиационно опасном объекте. Он основан на выявлении реальной (фактической) обстановки путем измерения уровней ионизирующего излу­чения и степени радиоактивного загрязнения местности и объектов.

В выводах, которые формулируются силами РСЧС в результате оценки радиаци­онной обстановки, для службы медицины катастроф должно быть указано:

• число людей, пострадавших от ионизирующего излучения; требуемые силы и средства здравоохранения;

• наиболее целесообразные действия персонала АЭС, ликвидаторов, личного состава формирований службы медицины катастроф;

• дополнительные меры защиты различных контингентов людей.

Характерной особенностью следа радиоактивного облака при авариях на АЭС является пятнистость (локальность) и мозаичность загрязнения, обусловленная мно­гократностью выбросов, дисперсным составом радиоактивных частиц, разными ме­теоусловиями во время выброса, а также значительно более медленное снижение уровня радиации, чем при ядерных взрывах, обусловленное большим количеством долгоживущих изотопов. По опыту Чернобыля установлено, что уровень радиации за первые сутки снижается в 2 раза, за месяц - в 5, за квартал - в 11, за полгода - в 40 и за год - в 85 раз. При ядерных взрывах при семикратном увеличении времени радио­активность за счет большого количества (более 50%) сверхкоротко- и короткоживущих изотопов уменьшается в 10 раз. Например, если уровень радиации через 1 ч с момента взрыва - 1000 мР/ч, то через 7 ч он составит 100, а через 49 ч - 10 мР/ч.

Характер радиационного воздействия на людей, животных и окружающую сре­ду при авариях на АЭС существенно зависит от состава радиоактивного выброса. В процессе ядерных реакций в реакторе создается большой комплекс радионуклидов, период полураспада которых лежит в пределах от нескольких секунд до нескольких сотен тысяч лет. Так, 92Кг имеет период полураспада 1,84 с; 92Ru - 5,9 с; 1311 - 8,1 сут; 90Sr - 28 лет; l37Cs - 30,2 года; 239Ри - 2,4∙104 года, 143Се - 5∙106 лет и т.д.

Для оценки поражающего действия и обеспечения эффективности последующе­го лечения важно знать еще некоторые характеристики представленных радионукли­дов. Так, 131I имеет период полувыведения 120 сут, выводится преимущественно с мочой; 137Cs - 140 сут, выводится с мочой и калом; 90Sr - 10 лет, выводится с мочой.

 







Дата добавления: 2015-09-04; просмотров: 812. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия