Студопедия — ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПРОЦЕССЫ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПРОЦЕССЫ






В большинстве первых экспериментов по лазерному зондированию атмосферы использовались импульсные лазеры с достаточно скромными характеристиками, например лазер на рубине (длина волны излучения 694,3 нм, 1 нм = 10-9 м) с энергией излучения в импульсе 0,1-1 Дж, при длительности импульса 30 наносекунд (1 нс = 10-9 с). Это означает, что в атмосферу из лазера со скоростью света ("3.108 м/с) выбрасывается "пачка" фотонов, причем, грубо говоря, последний фотон вырывается из лазера позже первого на 30 наносекунд. Такая пачка фотонов - световой зонд - за тысячную долю секунды пролетает сквозь трехсоткилометровую толщу атмосферы. Пространственная протяженность зонда в данном случае составляет L = 9 м (L = ct, где с - скорость света, t - длительность импульса). Обычно эту величину делят пополам и называют локационной протяженностью импульса. Не будем уточнять, зачем это делают, главное, что импульс такой длительности занимает в пространстве несколько метров. Отсюда и высокое пространственное разрешение: зондируя облака, например, можно определять интенсивность рассеянного света через каждые несколько метров, или, другими словами, изучать тонкую структуру облака.

При энергии излучения лазера на рубине 1 Дж световой зонд содержит 3,5.1018 фотонов. Для сравнения: солнечное излучение, приходящее на границу верхней атмосферы каждые 30 наносекунд, на длине волны излучения рубинового лазера "поставляет" всего лишь 108 фотонов. Излучение лазера когерентно и монохроматично: число фотонов, имеющих чуть большую или меньшую длину волны излучения по сравнению с основной, обычно не превышает сотые доли процента. Эти свойства определяют возможности лазерного зондирования, их огромные преимущества по сравнению, например, с прожекторным лучом.

Налетая на молекулу или частицу аэрозоля, фотон может участвовать в нескольких процессах. Первый: фотон полностью передает свою энергию, например молекуле. Вещество нагревается, а сам фотон исчезает - это процесс поглощения. Второй: фотон при столкновении изменяет направление движения - происходит рассеяние.

Столкнувшись с молекулой, фотон может поглотиться с последующим испусканием других фотонов. Это третий процесс - спонтанное комбинационное рассеяние (СКР).

Если частота энергетического перехода в спектре атома совпадает с частотой излученного лазером фотона, наблюдается процесс резонансного рассеяния (РР).

Молекулы и атомы воздуха находятся в хаотическом, тепловом движении, а аэрозоли, более тяжелые частички, переносит ветер. Вспомним еще одно физическое явление - эффект Доплера. В акустике этот эффект проявляется как изменение частоты звуковых колебаний, которые регистрирует наблюдатель при приближении или удалении источника звука. Явление Доплера характерно и для электромагнитных волн.

Фотоны, которые упали на молекулы и рассеялись, изменяют частоту. Так как хаотическое движение молекул происходит с разными скоростями и во всех направлениях, в рассеянном излучении наблюдается целый спектр частот - происходит доплеровское уширение линии излучения лазера. Такое явление использовалось ранее, например, для определения температуры верхних слоев атмосферы по линиям излучения полярных сияний (скорость молекул зависит от температуры). А аэрозоли испытывают направленное движение - возникает доплеровский сдвиг частоты. Этот эффект используется, в частности, астрофизиками для определения скорости разлетающихся галактик.

Интенсивность процесса поглощения находят по величине поперечного сечения поглощения одной молекулой, а произведение этой величины на число молекул в единице объема есть показатель поглощения данной среды. Аналогично эффективность рассеяния определяется величиной показателя рассеяния. Сумма показателей поглощения и рассеяния есть показатель ослабления средой данного излучения; ослабление происходит по закону Бугера (см. словарик к статье).

И последнее. Процессы рассеяния характеризуются индикатрисой рассеяния - безразмерной величиной, показывающей, какая часть фотонов отклоняется от первоначального направления движения на тот или иной угол после взаимодействия с молекулами или аэрозолями. Очень важно, что небольшая часть фотонов (при молекулярном рассеянии 12%, при аэрозольном - около 3%) все-таки, испытав рассеяние, направляется обратно к лазеру. А это позволяет поставить рядом с ним приемник фотонов, то есть осуществить локационный принцип измерений, создать лазерный локатор - лидар.

ЛИДАР

Этот прибор по принципиальному устройству аналогичен радиолокатору (радару), а назван по аббревиатуре английских слов Light Detection and Ranging - "свет детектирует и измеряет расстояние".

В приемной системе лидара используется приемная оптическая антенна (объектив, телескоп и т. п.), в фокусе которой расположен фотоприемник (обычно фотоэлектронный умножитель - ФЭУ). Приходящие "назад" фотоны собираются оптической антенной, на фотокатоде ФЭУ преобразуются в фотоэлектроны, возникающий электрический ток усиливается и поступает на регистрирующее устройство. Самое простое из них, которое, правда, уже давно не применяется, - осциллограф, но для объяснения работы лидара воспользуемся этим наглядным прибором. Луч осциллографа начинает движение по экрану в момент излучения в атмосферу лазерного импульса. Развертка осциллографа калибруется в единицах времени, а так как скорость движения лазерного зонда известна (скорость света), то каждая точка на луче осциллографа определяет расстояние от лидара.

Но вот луч лазера встретил на своем пути облако или слой аэрозолей. Рассеяние фотонов резко увеличилось, большее их количество возвращается назад к приемной оптической антенне, возрастает фототок, и на экране осциллографа появляется импульс, обусловленный сигналом обратного рассеяния. На участках трассы bc и de облаков нет, аэрозолей мало и величина сигнала уменьшается.

Конечно, прибор, поясняющий работу лидара, и, скажем, лидар для измерений стратосферного озона похожи не более, чем грозоотметчик Попова на современный радиоприемник. Оптические передающие антенны, сужающие лазерный луч, различные спектральные приборы, позволяющие анализировать принятое излучение, специальные системы приема (при слабых сигналах - в режиме счета отдельных фотонов) и отображения уже геофизической информации - далеко не полный перечень всех блоков современных лидаров.

Заметим, что лазерный зонд в отличие от метеорологических ракет или шаров-пилотов "поднимается" практически мгновенно и дает сведения по всей трассе измерений во много раз быстрее, чем изменяется состояние атмосферы.

Самым неприятным обстоятельством при лазерном зондировании оказывается плотная облачность. Ослабление лазерного излучения в ней огромно, и с поверхности Земли уже нельзя получить сведения о состоянии атмосферы выше облаков. Выход один - зондировать атмосферу с космических аппаратов.







Дата добавления: 2015-09-04; просмотров: 308. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия