А) Околокатодная область
Занимает весьма небольшое пространство длиной не более м. Около катода возникает положительный объемный заряд, создаваемый положительными ионами. Между этим положительным объемным зарядом и катодом создается электрическое поле с напряженностью до В/м, в котором движутся электроны, вышедшие из катода и создающие электрический ток. Электрическое поле воздействует на электроны, увеличивая их скорость. При соударении такого электрона с нейтральной частицей может произойти ионизация, для чего электрон должен обладать определенной энергией. Напряжение (разгоняющее напряжение), которое должен пройти электрон для приобретения энергии, необходимой для ионизации, называется потенциалом ионизации. Для газов этот потенциал колеблется от 24,58 В (гелий) до 13,3 В (водород). Пары металлов имеют значительно меньший потенциал ионизации. Так, для меди он равен 7,7 В. Положительные ионы, так же как и электроны, разгоняются электрическим полем, но из-за большей массы скорость их много меньше. При ударе положительного иона о нейтральную частицу меньшая часть энергии передается на ионизацию, так что ионизация толчком происходит в основном за счет электронов. Ввиду малой протяженности околокатодной области электроны не набирают скорости, достаточной для ионизации ударом. Чаще всего после удара атома переходит в возбужденное состояние (электрон атома переходит на более удаленную от ядра орбиту). Для ионизации возбужденного атома требуется меньшая энергия. В результате необходимый потенциал ионизации уменьшается. Такая ионизация называется ступенчатой. При ступенчатой ионизации необходимо многократный удар электронов по атому: на каждый образующийся положительный ион требуются десятки электронов. Поэтому ток около катода, несмотря на наличие положительных ионов, носит электронный характер. Образующиеся электроны не создают около катода отрицательного объемного заряда, так как их скорость значительно больше скорости тяжелых положительных ионов. Положительные ионы разгоняются в поле катодного падения напряжения и бомбардируют катод. Благодаря этому температура катода поднимается и достигает точки испарения материала электрода. При высоких температурах появляется термоэлектронная эмиссия катода, которая в сильной степени зависит от температуры электрода. Просуществовать только за счет автоэлектронной эмиссии, создаваемой у катода электрическим полем.
|