Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нечеткие отношения и их свойства





Определение 30. Нечетким отношением на множествах называется нечеткоеподмножество декартова произведения . Степень принадлежности показывает степеньвыполнения отношения между элементами , , .

В дальнейшем будем рассматривать только бинарныенечеткие отношения, которые задаются на декартовом произведении двух множеств.Обозначим эти множества через и . Тогда задание бинарного нечеткогоотношения на состоит вуказании всех троек , где , , или, что тоже самое, .

Пример 5. Задать нечеткое отношение (" приблизительно равно ").

Пусть . Тогда нечеткое отношение удобнозадавать матрицей вида:

.

Длянепрерывных множеств и нечеткое отношение можно задатьследующей функцией принадлежности: . Нечеткие отношения на дискретных инепрерывных множествах изображены на рис. 10.

Пример 6. Задать нечеткое отношение " намного меньше, чем ".

Пусть . Тогда нечеткое отношение можно задатьматрицей вида:

.

Длянепрерывных множеств и нечеткое отношение " намного меньше, чем " можноопределить такой функцией принадлежности: . Нечеткие отношения " намного меньше, чем " надискретных и непрерывных множествах изображены на рис. 11.

Как видно из примеров, нечеткие отношения являютсяболее гибкими по сравнению с традиционными отношениями. Они позволяют задать нетолько сам факт выполнения отношения, но и указывать степень его выполнения,что является очень важным для многих практических задач.

Рисунок10 - Нечеткое отношение " приблизительно равно "

Рисунок11 - Нечеткое отношение " намного меньше, чем "

Пример 7. Задать отношение "схожий менталитет" для следующих национальностей {Украинцы(У), Чехи (Ч), Австрийцы (А), Немцы (Н)}.

Использование обычного, не нечеткого отношенияпозволяет выделить только одну пару наций со схожими менталитетами -немцев и австрийцев. Этим отношением не отражаться тот факт, что по менталитетучехи более близки к немцам, чем украинцы. Нечеткое отношение позволяет легкопредставить такую информацию: .

Определение 31. Носителем нечеткого отношения на множествах и называетсяподмножество декартова произведения вида: .

Носитель нечеткого отношения можно рассматривать какобычное отношение, связывающего все пары , для которых степень выполнениянечеткого отношения не равна нулю. Более полезным являетсяиспользование -сеченийнечеткого отношения, определения которых аналогично определениям множеств -уровня (см. раздел1.2).

Определение 32. -сечением нечеткого отношения на называется обычноеотношение, связывающее все пары , для которых степень выполнениянечеткого отношения не меньше : .

Определение 33. Нечеткое отношение на называется рефлексивным, еслидля любого выполняетсяравенство .В случае конечного множества все элементы главной диагонали матрицы равны 1. Примеромрефлексивного нечеткого отношения может быть отношение "приблизительно равны".

Определение 34. Нечеткое отношение на называется антирефлексивным, еслидля любого выполняетсяравенство .В случае конечного множества все элементы главной диагонали матрицы равны 0.Примером антирефлексивного нечеткого отношения может быть отношение"значительно больше".

Определение 35. Нечеткое отношение на называется симметричным, еслидля любой пары выполняетсяравенство .Матрица симметричного нечеткого отношения, заданного на конечном множестве,симметричная.

Определение 36. Нечеткое отношение на называется асимметричным, есливыражение справедливодля любой пары .Примером асимметричного нечеткого отношения может служить отношение "намногобольше".

Определение 37. Нечеткое отношения и на называется обратными, если длялюбой пары выполняетсяравенство .Примером обратных нечетких отношений может служить пара "намного больше" ‑"намного меньше".







Дата добавления: 2015-09-04; просмотров: 664. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия