Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нечеткие логические операции





Вначале кратко напомнить основные положения обычной (булевой) логики. Рассмотрим два утверждения A и B, каждое из которых может быть истинным или ложным, т.е. принимать значения "1" или "0". Для этих двух утверждений всего существует различных логических операций, из которых содержательно интерпретируются лишь пять: И (), ИЛИ (), исключающее ИЛИ (), импликация () и эквивалентность (). Таблицы истинности для этих операций приведены в табл. 5.

Таблица 5 - Таблицы истинности булевой логики

A B
             
             
             
             

Предположим, что логическое утверждение может принимать не два значения истинности, а три, например: "истинно", "ложно" и "неопределенно". В этом случае мы будем иметь дело не с двухзначной, а трехзначной логикой. Общее количество бинарных операций, а, следовательно, и таблиц истинности, в трехзначной логике равно . Нечеткая логика является разновидностью многозначной логики, в которой значения истинности задаются лингвистическими переменными или термами лингвистической переменной "истинность". Правила выполнения нечетких логических операций получают из булевых логических операций с помощью принципа обобщения.

Определение 45. Обозначим нечеткие логические переменные через и , а функции принадлежности, задающие истинностные значения этих переменных через и , . Нечеткие логические операции И (), ИЛИ (),
НЕ () и импликация () выполняются по таким правилам:

;

;

;

.

В многозначной логике логические операции могут быть заданы таблицами истинности. В нечеткой логике количество возможных значений истинности может быть бесконечным, следовательно в общем виде табличное представление логических операций невозможно. Однако, в табличной форме можно представить нечеткие логические операции для ограниченного количества истинностных значений, например, для терм-множества {"истинно", "очень истинно", "не истинно", "более-менее ложно", "ложно"}. Для трехзначной логики с нечеткими значениями истинности T -; "истинно", F -; "ложно" и T+F - "неизвестно" Л Заде предложил такие лингвистические таблицы истинности:

T T F T T
T F F F T
T T+F F T+F T
F T T F T
F F T F F
F T+F T F T+F
T+F T T+F T+F T
T+F F T+F F T+F
T+F T+F T+F T+F T+F

Применяя правила выполнения нечетких логических операций из определения 45 можно расширить таблицы истинности для большего количества термов. Как это сделать рассмотрим на следующем примере.

Пример 10. Заданы следующие нечеткие истинностные значения:

;

;

.

Применяя правило из определения 45, найдем нечеткую истинность выражения "почти истинно ИЛИ истинно":

.

Сравним полученное нечеткое множество с нечетким множеством "более-менее истинно". Они почти равны, значит:

.

В результате выполнения логических операций часто получается нечеткое множество, которое не эквивалентно ни одному из ранее введенных нечетких значений истинности. В этом случае необходимо среди нечетких значений истинности найти такое, которое соответствует результату выполнения нечеткой логической операции в максимальной степени. Другими словами, необходимо провести так называемую лингвистическую аппроксимацию, которая может рассматриваться как аналог аппроксимации эмпирического статистическими распределения стандартными функциями распределения случайных величин. В качестве примера приведем предложенные Балдвином лингвистические таблицы истинности для показанных на рис. 15 нечетких значений истинности:

ложно ложно ложно ложно
истинно ложно ложно истинно
истинно истинно истинно истинно
неопределенно ложно ложно неопределенно
неопределенно истинно неопределенно истинно
неопределенно неопределенно неопределенно неопределенно
истинно очень истинно истинно очень истинно
истинно более-менее истинно более-менее истинно истинно






Дата добавления: 2015-09-04; просмотров: 606. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия