Уравнение Бернулли для идеальной жидкости
Для получения уравнения Д. Бернулли используем теорему об изменении кинетической энергии (теорему живых сил), которая связывает изменение кинетической энергии системы точек с работой сил, вызывающих это изменение. (см. Лойцянский Л.Г., Лурье А.И. Курс теоретической механики, т2, стр. 242) В интегральной форме эта теорема формулируется следующим образом: «Приращение кинетической энергии системы материальных точек на конечном перемещении равно сумме работ внешних и внутренних сил, действующих на этом перемещении»
Выделим в элементарной струйке в данный момент времени объем, заключенный между двумя ортогональными к боковой поверхности трубки сечениями и . В смежный момент времени выделенный объем жидкости сместится вдоль трубки тока и займет положение, ограниченное сечениями и . В установившемся движении новый объем будет отличаться от предыдущего только тем, что к нижней части трубки присоединится элементарный объем, заключенный между сечениями и , а от верхней вычтется такой же объем между сечениями и (рисунок 1) Рисунок 1 – Схема движения объема в трубке тока
Изменение кинетической энергии в рассматриваемом объеме трубки сведется к разности
Массы и вычисляются с использованием уравнения неразрывности
так как , , то Замечая, что перемещение частиц в сечениях и будут соответственно равны и , составим выражение элементарной работы приложенных к сечениям и сил давления, равных по величине и , в виде
Работа сил давления, приложенных к боковой поверхности трубки тока равна нулю, т.к. перемещения жидкости вдоль боковой поверхности трубки тока перпендикулярны к силам давления. Работу сил тяжести получим как уменьшение потенциала при перемещении выделенного объема жидкости из начального положения в конечное. При расчете этого уменьшения потенциала примем во внимание, что потенциал общей части начального и конечного положения объемов при этом выпадает и работа сил тяжести будет равна
Приравнивая, согласно теореме об изменении кинетической энергии выражение сумме выражений и , а затем, сокращая обе части полученного равенства на получим
Так как (жидкость не сжимаема), то, поделив на левую и правую части неравенства, получим т.е. и ст.ж. , т.е. . Полученное выражение называют трехчленом Д. Бернулли.
|