Студопедия — Биологическая фиксация азота
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Биологическая фиксация азота






Симбиотическая азотфиксация

Реферат

 

 

Исполнители:

студентка группы Би-41 Расолова В.В.

 

Научный руководитель:

кандидат биологических наук, доцент Шевцова Л.В.

 

 

Гомель 2012


Содержание

1. Биологическая фиксация азота……………………………………………3

2. Фиксация азота клубеньковыми бактериями…………………………….6

3. Биохимия азотфиксации…………………………………………………...9

4. Значение клубеньковых бактерий в агротехнике бобовых культур…..11

Заключение…………………………………………………………………...15

Список использованных источников……………………………………….16

Биологическая фиксация азота

Круговорот азота в природе – важнейшее звено в биогеохимических циклах нашей планеты. Земная атмосфера, на 78% состоящая из азота, служит, по сути дела, основным резервуаром этого важнейшего элемента всего живого. Азот входит в состав белков, нуклеиновых кислот, многих простых и сложных молекул, составляющих структуры организмов любого уровня от человека до микроорганизма.

Человеку и животным азот нужен в виде белков животного и растительного происхождения, растениям – в виде солей азотной кислоты или ионов аммония. Представители животного и растительного мира не могут черпать азот непосредственно из атмосферы воздуха. Такой способностью обладает ограниченное количество видов микроорганизмов и синезелёных водорослей, которые называют азотфиксаторами, а процесс связывания азота атмосферы этими организмами – биологической азотфиксацией. Азотфиксаторы, как правило, сожительствуют с теми или инымми растениями, обеспечивая их азотом и используя для своей жизни многими веществами, образующимися в растениях [1].

В молекуле азота существует очень прочная тройная связь, которая обеспечивает инертность газообразного азота. Для перевода одной молекулы N2 в две молекулы аммиака требуется 225 ккал.

Биологический процесс восстановления азота представляет собой цепь ферментативных реакций, в которых главную роль играет фермент нитрогеназа. Активный центр этого фермента состоит из комплекса белков, содержащих железо, серу и молибден в соотношении Fe: S: Mo = 6: 8: 1. Выделена также ванадийсодержащая нитрогеназа, уровень активности которой на 30% ниже, чем у Mo – нитрогеназы.

Азот, растворенный в воде, поступает в азотфиксирующий центр, где в его активации участвуют два атома молибдена. После взаимодействия с азотом молибден восстанавливается за счет электронов, поступающих в активный центр через Fe – белок и Mo-Fe-белок. Этот перенос сопряжен с реакцией разложения АТФ, т.е., он идет с затратой энергии. В передаче электронов нитрогеназе участвует железосодержащий водорастворимый белок – фермент ферредоксин, а в активации водорода воды и переносе протонов – фермент гидрогеназа.

Образование нитрогеназы у бактерий связано с наличием особых генов, содержащихся или в ДНК, или в плазмиде, ответственной за синтез этих специфических ферментных белков. Эти гены высоко консервативны и широко распространены у бактерий благодаря существованию эффективных систем обмена генетической информацией. В то же время диазотрофы не встречаются среди эукариот. Долгое время не обнаруживали азотофиксаторов и среди архебактерий. Однако в последнее время стало известно, что метаногены имеют особую термостабильную систему азотфиксации, отличную от термолабильной системы эубактерий. Таким образом, хотя свойство фиксировать азот присуще многим организмам, оно ограничено только царством прокариот.

У бактерий – азотфиксаторов встречаются все известные типы метаболизма. Среди них есть аэробы с дыхательным энергетическим обменом, анаэробы, осуществляющие брожение, хемоорганотрофы, автотрофы – фотосинтетики и хемолитоавтотрофы. Фиксация молекулярного азота для них не обязательный процесс, так как в присутствии азота в другой форме – минеральной или органической – они обеспечивают свои потребности связанным азотом.

Итак, если ранее считалось, что азотфиксация присуща лишь некоторым формам прокариотических организмов, то на данном этапе развития общей и почвенной микробиологии данный процесс считается фундаментальным свойством прокариот [2].

Азотфиксация – процесс усвоения молекул азота воздуха азотфиксирующими бактериями с образованием соединений азота, доступных для использования другими организмами.

Азотфиксация осуществляется как свободноживущими азотфиксирующими бактериями (не симбиотическая), так и симбиотическими азотфиксаторами, живущими в симбиозе с высшими растениями (симбиотическая).

Симбиотические азотфиксирующие микроорганизмы выделены М. Бейеринком в 1888 г. из корней клубеньков (бородавчатых наростов) бобовых растений. Микроорганизмы назвали клубеньковыми бактериями, и было установлено, что они вызывают образование клубеньков, в которых осуществляется фиксация азота атмосферы. Бактерии в клубеньках питаются органическими соединениями, синтезированными растением, а растение получает из клубеньков связанные соединения азота. Так, между бактериями и растениями устанавливаются симбиотические взаимоотношения.

К группе симбиотических азотфиксаторов относят бактерии родов Azorhizobium, Bradyrhizobium, Photorhizobium, Rizobium и Sinorhizobium, образующие клубеньки на корнях бобовых растений, а также некоторые актиномицеты и цианобактерии. Насчитывается более 200 видов небобовых растений, которые способны в симбиозе с микроорганизмами фиксировать молекулярный азот. Эти растения представлены главным образом древесными формами (ольха, восковница, лох, облепиха и др.).

Клубеньковые бактерии представляют собой грамотрицательные палочки 0,5 – 0,9 мкм шириной, 1 – 3 мкм длиной, подвижные, монотрихи с полярным или субполярным расположением жгутиков или перитрихи, аэробы. Спор не образуют. Быстрорастующие формы относятся к роду Rhizobium, медленнорастущие – к роду Bradyrhizobium.

Источником азота для клубеньковых бактерий служат разнообразные соединения – соли аммония и азотной кислоты, многие аминокислоты, пуриновые и пиримидиновые основания и т.д. Обычно клубеньковые бактерии фиксируют азот в симбиозе с растением. Однако на специальных питательных средах при отсутствии кислорода чистые культуры Rhizobium также способны усваивать некоторое количество молекулярного азота.

Клубеньковые бактерии используют разнообразные углеводы, в том числе и некоторые полисахариды (декстрин, гликоген). При усвоении углеводов в процессе жизнедеятельности некоторых видов образуются кислоты. Бактерии потребляют многие органические кислоты и многоатомные спирты.

Лучше развиваются клубеньковые бактерии в питательной среде с витаминами группы В. Ряд витаминов (тиамин, В12, рибофлавин) и ростовые вещества микроорганизмы синтезируют сами.

Для большинства культур клубеньковых бактерий оптимальное значение рН среды находится в пределах 6,5 – 7,5, а при рН 4,5 – 5 и 8 их рост приостанавливается. Однако встречаются культуры, относительно устойчивые к кислой среде и образующие клубеньки в почвах с рН = 5. Оптимальная температура для большинства культур около 24 – 260C, при температуре ниже 50С и выше 370С рост прекращается.

Для каждого вида бобовых растений имеются свои разновидности (штаммы) ризобий, которые и получили свои названия от названий хозяина (Rhizobium trifolii – клубеньковые бактерии клевера, Rhizobium lupine – клубеньковые бактерии люпина и т.д.).

Клубеньки, формирующиеся на корнях ольхи и некоторых других не бобовых растений, заселены актиномицетами рода Frankia. У травянистых растений рода Gunnera клубеньки образуются на стеблях цианобактериями рода Nostoc. Фиксирующие азот цианобактерии рода Anabaena поселяются в полостях листьев водного папоротника Azolla.

Количество клубеньков на корнях бобовых растений всегда более или менее ограниченно. Клубеньки содержат больше азота, чем остальные части растения. Это служит доказательством того, что именно в клубеньках протекает процесс усвоения азота. Причем фиксация азота атмосферы осуществляется только в бактероидах, и около 90% связанного азота переходит из них в виде ионов аммония в цитоплазму корня бобового растения. Передача связанного азота из тканей клубенька в наземную часть растения происходит в период, когда бактероиды жизнеспособны. Определенное количество усвоенного растениями азота выделяется корнями в почву с продуктами корневых выделений, например с аминокислотами (аспарагиновой кислотой) [3].

 







Дата добавления: 2015-09-04; просмотров: 1722. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия