Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Биологическая фиксация азота





Симбиотическая азотфиксация

Реферат

 

 

Исполнители:

студентка группы Би-41 Расолова В.В.

 

Научный руководитель:

кандидат биологических наук, доцент Шевцова Л.В.

 

 

Гомель 2012


Содержание

1. Биологическая фиксация азота……………………………………………3

2. Фиксация азота клубеньковыми бактериями…………………………….6

3. Биохимия азотфиксации…………………………………………………...9

4. Значение клубеньковых бактерий в агротехнике бобовых культур…..11

Заключение…………………………………………………………………...15

Список использованных источников……………………………………….16

Биологическая фиксация азота

Круговорот азота в природе – важнейшее звено в биогеохимических циклах нашей планеты. Земная атмосфера, на 78% состоящая из азота, служит, по сути дела, основным резервуаром этого важнейшего элемента всего живого. Азот входит в состав белков, нуклеиновых кислот, многих простых и сложных молекул, составляющих структуры организмов любого уровня от человека до микроорганизма.

Человеку и животным азот нужен в виде белков животного и растительного происхождения, растениям – в виде солей азотной кислоты или ионов аммония. Представители животного и растительного мира не могут черпать азот непосредственно из атмосферы воздуха. Такой способностью обладает ограниченное количество видов микроорганизмов и синезелёных водорослей, которые называют азотфиксаторами, а процесс связывания азота атмосферы этими организмами – биологической азотфиксацией. Азотфиксаторы, как правило, сожительствуют с теми или инымми растениями, обеспечивая их азотом и используя для своей жизни многими веществами, образующимися в растениях [1].

В молекуле азота существует очень прочная тройная связь, которая обеспечивает инертность газообразного азота. Для перевода одной молекулы N2 в две молекулы аммиака требуется 225 ккал.

Биологический процесс восстановления азота представляет собой цепь ферментативных реакций, в которых главную роль играет фермент нитрогеназа. Активный центр этого фермента состоит из комплекса белков, содержащих железо, серу и молибден в соотношении Fe: S: Mo = 6: 8: 1. Выделена также ванадийсодержащая нитрогеназа, уровень активности которой на 30% ниже, чем у Mo – нитрогеназы.

Азот, растворенный в воде, поступает в азотфиксирующий центр, где в его активации участвуют два атома молибдена. После взаимодействия с азотом молибден восстанавливается за счет электронов, поступающих в активный центр через Fe – белок и Mo-Fe-белок. Этот перенос сопряжен с реакцией разложения АТФ, т.е., он идет с затратой энергии. В передаче электронов нитрогеназе участвует железосодержащий водорастворимый белок – фермент ферредоксин, а в активации водорода воды и переносе протонов – фермент гидрогеназа.

Образование нитрогеназы у бактерий связано с наличием особых генов, содержащихся или в ДНК, или в плазмиде, ответственной за синтез этих специфических ферментных белков. Эти гены высоко консервативны и широко распространены у бактерий благодаря существованию эффективных систем обмена генетической информацией. В то же время диазотрофы не встречаются среди эукариот. Долгое время не обнаруживали азотофиксаторов и среди архебактерий. Однако в последнее время стало известно, что метаногены имеют особую термостабильную систему азотфиксации, отличную от термолабильной системы эубактерий. Таким образом, хотя свойство фиксировать азот присуще многим организмам, оно ограничено только царством прокариот.

У бактерий – азотфиксаторов встречаются все известные типы метаболизма. Среди них есть аэробы с дыхательным энергетическим обменом, анаэробы, осуществляющие брожение, хемоорганотрофы, автотрофы – фотосинтетики и хемолитоавтотрофы. Фиксация молекулярного азота для них не обязательный процесс, так как в присутствии азота в другой форме – минеральной или органической – они обеспечивают свои потребности связанным азотом.

Итак, если ранее считалось, что азотфиксация присуща лишь некоторым формам прокариотических организмов, то на данном этапе развития общей и почвенной микробиологии данный процесс считается фундаментальным свойством прокариот [2].

Азотфиксация – процесс усвоения молекул азота воздуха азотфиксирующими бактериями с образованием соединений азота, доступных для использования другими организмами.

Азотфиксация осуществляется как свободноживущими азотфиксирующими бактериями (не симбиотическая), так и симбиотическими азотфиксаторами, живущими в симбиозе с высшими растениями (симбиотическая).

Симбиотические азотфиксирующие микроорганизмы выделены М. Бейеринком в 1888 г. из корней клубеньков (бородавчатых наростов) бобовых растений. Микроорганизмы назвали клубеньковыми бактериями, и было установлено, что они вызывают образование клубеньков, в которых осуществляется фиксация азота атмосферы. Бактерии в клубеньках питаются органическими соединениями, синтезированными растением, а растение получает из клубеньков связанные соединения азота. Так, между бактериями и растениями устанавливаются симбиотические взаимоотношения.

К группе симбиотических азотфиксаторов относят бактерии родов Azorhizobium, Bradyrhizobium, Photorhizobium, Rizobium и Sinorhizobium, образующие клубеньки на корнях бобовых растений, а также некоторые актиномицеты и цианобактерии. Насчитывается более 200 видов небобовых растений, которые способны в симбиозе с микроорганизмами фиксировать молекулярный азот. Эти растения представлены главным образом древесными формами (ольха, восковница, лох, облепиха и др.).

Клубеньковые бактерии представляют собой грамотрицательные палочки 0,5 – 0,9 мкм шириной, 1 – 3 мкм длиной, подвижные, монотрихи с полярным или субполярным расположением жгутиков или перитрихи, аэробы. Спор не образуют. Быстрорастующие формы относятся к роду Rhizobium, медленнорастущие – к роду Bradyrhizobium.

Источником азота для клубеньковых бактерий служат разнообразные соединения – соли аммония и азотной кислоты, многие аминокислоты, пуриновые и пиримидиновые основания и т.д. Обычно клубеньковые бактерии фиксируют азот в симбиозе с растением. Однако на специальных питательных средах при отсутствии кислорода чистые культуры Rhizobium также способны усваивать некоторое количество молекулярного азота.

Клубеньковые бактерии используют разнообразные углеводы, в том числе и некоторые полисахариды (декстрин, гликоген). При усвоении углеводов в процессе жизнедеятельности некоторых видов образуются кислоты. Бактерии потребляют многие органические кислоты и многоатомные спирты.

Лучше развиваются клубеньковые бактерии в питательной среде с витаминами группы В. Ряд витаминов (тиамин, В12, рибофлавин) и ростовые вещества микроорганизмы синтезируют сами.

Для большинства культур клубеньковых бактерий оптимальное значение рН среды находится в пределах 6,5 – 7,5, а при рН 4,5 – 5 и 8 их рост приостанавливается. Однако встречаются культуры, относительно устойчивые к кислой среде и образующие клубеньки в почвах с рН = 5. Оптимальная температура для большинства культур около 24 – 260C, при температуре ниже 50С и выше 370С рост прекращается.

Для каждого вида бобовых растений имеются свои разновидности (штаммы) ризобий, которые и получили свои названия от названий хозяина (Rhizobium trifolii – клубеньковые бактерии клевера, Rhizobium lupine – клубеньковые бактерии люпина и т.д.).

Клубеньки, формирующиеся на корнях ольхи и некоторых других не бобовых растений, заселены актиномицетами рода Frankia. У травянистых растений рода Gunnera клубеньки образуются на стеблях цианобактериями рода Nostoc. Фиксирующие азот цианобактерии рода Anabaena поселяются в полостях листьев водного папоротника Azolla.

Количество клубеньков на корнях бобовых растений всегда более или менее ограниченно. Клубеньки содержат больше азота, чем остальные части растения. Это служит доказательством того, что именно в клубеньках протекает процесс усвоения азота. Причем фиксация азота атмосферы осуществляется только в бактероидах, и около 90% связанного азота переходит из них в виде ионов аммония в цитоплазму корня бобового растения. Передача связанного азота из тканей клубенька в наземную часть растения происходит в период, когда бактероиды жизнеспособны. Определенное количество усвоенного растениями азота выделяется корнями в почву с продуктами корневых выделений, например с аминокислотами (аспарагиновой кислотой) [3].

 







Дата добавления: 2015-09-04; просмотров: 1843. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия