Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет коэффициента ассоциации





 

Критерий Лучшие Отчисленные Сумма (Νχ)
I α = 75 b= 16 a +b = 91
IV с= 14 d= 68 c + d=82
Сумма (Nv) а + с = 89 b + d = 84 N= 173

 

Рассмотрим пример вычисления коэффициента ассоциации при изучении связи между такими критериями пригодности, как 1 и IV группы, и критериями успешности обучения – лучшие и отчисленные:

где а, b, с, d– численности альтернативных признаков (практически неограничены).

В корреляционной решетке (табл. 10) приведены исходные данные для расчетов (х– группа; у – успешность обучения).

Подставляя в формулу соответствующие значения из таблицы, находим величину коэффициента ассоциации (ra = 0,65), который выражается в долях от 0 до 1. Достоверность оценивается по его отношению к средней ошибке, определяемой по формуле

откуда t= 16,25

Достоверность rа может быть определена также и по специальным таблицам [52].

При изучении корреляционной зависимости между вариационными рядами с отсутствием линейной зависимости более правомерным является вычисление корреляционного отношения, которое измеряет состояние любых, в том числе и нелинейных, связей между признаками.

В отличие от коэффициента корреляции, изучающего двустороннюю связь между x и у, корреляционное отношение (η) показывает только зависимость изменений второго (у) признака от изменений первого (х), или наоборот Корреляционное отношение – величина относительная, положительная и принимает значение от 0 до 1. Показатели корреляционного отношения обычно не равны между собой – ηy/x ≠ ηx/y Они определяются по следующим формулам:

и , где

– среднее квадратическое отклонение частотных или групповых средних величин (ух), то есть частная дисперсия;

– общая дисперсия совокупности.

 

Эти формулы можно выразить и в другом виде:

;

;

 

По приведенным формулам удобно определять коэффициенты корреляционного отношения для небольших выборок, а при наличии большого числа наблюдений необходимо предварительно весь материал группировать в вариационные ряды и вносить в корреляционную таблицу.

Рассмотрим вычисление корреляционного отношения на выборке из 10 наблюдений (табл. 11)

Сначала находим коэффициент корреляционного отношения полетов у по грубым ошибкам х, то есть η , для чего ранжируем выборку по x (значения x расположены в возрастающем порядке сверху вниз). Затем определяем вспомогательные величины для вычисления корреляционного отношения по x и подставляем в формулу, откуда ηγ/χ = 0,99.

 

Таблица11







Дата добавления: 2015-09-04; просмотров: 489. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия