Основные положения. На диаграмме состояния железо–углерод (рис
На диаграмме состояния железо–углерод (рис. 1) сплавы, относящиеся к сталям, расположены в интервале концентраций углерода до 2,14 %, т. е. левее точки Е. При температурах ниже 727 °С все отожженные углеродистые стали состоят из двух фаз - феррита и цементита. Феррит - это твердый раствор углерода в железе с объемно-центрированной кубической решеткой (Fea). Максимальная растворимость углерода в Fea составляет около 0,02 % (точка Р). Цементит - это карбид железа Fe3C, содержащий 6,67 % С. При температурах выше линии GSE равновесной фазой является аустенит - твердый раствор углерода в железе с гранецентрированной кубической решеткой (Feg). Предельная растворимость углерода в Feg - 2,14 % (точка Е). В результате фазовых превращений, в твердом состоянии, при малых скоростях охлаждения, в сталях будут образовываться следующие структуры: перлит, избыточный феррит, вторичный цементит и третичный цементит. Рис. 1. Диаграмма Fe – Fe3C
Ниже линии GS в результате полиморфного превращения железа часть аустенита превращается в феррит с последующим перераспределением углерода между этими фазами. На линии SE из аустенита начинает выделяться избыточный углерод с образованием вторичного цементита. На линии РQ из феррита выделяется третичный цементит. Во всех сплавах правее точки Р при небольшом переохлаждении до температур ниже 727 °С аустенит эвтектоидного состава (0,8 % С) распадается на эвтектоидную смесь феррита и цементита, называемую перлитом, причем цементит может быть в виде пластинок или зерен (Приложение, рис. 4). Сталь содержащая 0,8 % С называется эвтектоидной. Стали содержащие менее 0,8 % С называют доэвтектоидными, а стали содержащие более 0,8 % С заэвтектоидными. Металлографический анализ металлов и сплавов заключается в исследовании структуры материалов при больших увеличениях с помощью микроскопа, а наблюдаемая структура называется микроструктурой. Изучение под микроскопом структуры металлов возможно лишь при достаточно интенсивном отражении световых лучей от исследуемой поверхности. Поэтому поверхность образца должна быть специально подготовлена. Образец, поверхность которого подготовлена для металлографического анализа, называется микрошлифом. Для изготовления микрошлифа необходимо вырезать образец из исследуемого металла, получить на нем плоскую, блестящую поверхность, а затем шлиф травят. Существует несколько методов травления, из которых наиболее распространен метод избирательного растворения фаз. Метод основан на различии физико-химических свойств отдельных фаз и пограничных участков зерен. В результате различной интенсивности растворения создается рельеф поверхности шлифа. Для травления микрошлиф погружают полированной поверхностью в раствор избранного состава и через некоторое время вынимают. Если полированная поверхность станет слегка матовой, травление считается законченным, шлиф сразу же промывают водой, затем спиртом и высушивают фильтровальной бумагой. Микрошлифы сталей травят 3-4% раствором НNO3 в спирте, после чего структурно свободные феррит и цементит по сравнению с темным (коричневатым) перлитом выглядят белыми. При охлаждении доэвтектоидной стали превращение аустенита в феррит начинается с границ отдельных зерен аустенита, и зёрна одной фазы постепенно заменяются на другие. Размер и количество ферритных зерен при этом превращении в значительной степени зависит от скорости охлаждения аустенита. При рассмотрении в микроскоп феррит наблюдается в виде светлых зерен неодинаковой яркости (Приложение, рис. 1). По мере увеличения концентрации углерода в доэвтектоидной стали количество зерен феррита убывает, а количество перлита увеличивается (Приложение, рис. 2). В сплавах, содержащих 0,5-0,75 % C зерна феррита располагаются по границам зерен другой структурной составляющей - перлита - в виде разорванной сетки (Приложение, рис. 3). В доэвтектоидной стали перлит в большинстве случаев имеет пластинчатое строение. Темные пластинки, видимые в перлите, представляют собой тени, отбрасываемые на участки феррита выступающими после травления участками цементита. Структура перлита в доэвтектоидных и заэвтектоидных сталях определяется условиями выполнения отжига. Форма и размер частиц цементита в перлите существенно влияют на его свойства. Так, например, перлит с зернистой структурой более пластичен и имеет меньшую твердость, чем пластинчатый. Твердость зернистого перлита 160-220 НВ, а пластинчатого - 200-250 НВ. С уменьшением размера цементитных частиц твердость и прочность перлита возрастает. Структура перлита определяет и обрабатываемость стали при резании. Доэвтектоидные стали хорошо обрабатываются резанием, если перлит имеет пластинчатую структуру, а эвтектоидные и заэвтектоидные - зернистую. В заэвтектоидных сталях возможно выделение вторичного цементита в виде сплошной сетки по границам зерен перлита (Приложение, рис. 5). Это происходит после полного отжига и является значительным дефектом, ухудшающим прочность, вязкость и обрабатываемость стали. Еще одной, но более редко встречающейся формой выделения цементита, также сильно ухудшающей механические свойства, является образование его в виде игл (вследствие значительного перегрева). Итак, можно выделить четыре типа структур сталей. Первый тип структуры - феррит и третичный цементит - наблюдается в низкоуглеродистых сталях, содержащих до 0,02 % С (т. Р). Такие стали называются техническим железом. Второй тип структуры - феррит и перлит - наблюдается в доэвтектоидных сталях, содержащих от 0,02 до 0,8 % С (т. S). Чем больше в доэвтектоидной стали углерода, тем больше в ней перлита. Третий тип структуры - перлит - наблюдается в эвтектоидной стали, содержащей 0,8 % С. Четвертый тип структуры - вторичный цементит и перлит - наблюдается в заэвтектоидной стали с содержанием углерода от 0,8 до 2,14 % (т. Е).
|