Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Движущая сила тепловых процессов





Движущей силой всякого переноса массы или энергии является разность потенциалов, характерных для данного процесса. Эта разность является мерой удаленности системы от состояния равновесия.

Движущей силой теплообмена между участками (точками) тела или поверхностью тела и окружающей средой является разность температур (Dt = t1- t2), называемая температурным напором.

Чем больше температурный напор, тем быстрее идет теплообмен. Скорость теплового процесса vt можно описать следующим уравнением:

(1)

где K – коэффициент пропорциональности; R – сопротивление теплопередаче.

Движущая сила теплообмена определяет величину теплового потока, как при теплопроводности, так и конвекции. При расчете процесса теплообмена и тепловых аппаратов необходимо знать величину теплового напора Dt.

В процессе теплообмена температуры сред меняются, следовательно, изменяется и величина Dt, которая зависит от направлений относительного движения теплоносителя и нагреваемого материала, а также от их свойств.

Движение может быть прямоточным, когда потоки движутся в одинаковом направлении, и противоточным, когда потоки движутся в противоположных направлениях. В некоторых случаях движение потоков может быть перекрестным.

На рис. 1 показан характер изменения температур потоков при прямоточном (а) и противоточном (б) движении вдоль поверхности теплообмена.

Более нагретый поток охлаждается от температуры t1 до t’’1, другой, более холодный, нагревается от t2 до t’’2.

При прямоточном движении температура потоков в предельном случае будет одинаковой, но конечная температура холодного потока t’’2 не может быть выше конечной температуры горячего потока t’’1. При противотоке такой случай, когда t’’2 > t’’1, возможен. Это означает, что средний температурный напорDtm в случае противотока выше.

Рис. 1.

Величину среднего температурного напора определяют как среднюю логарифмическую разность температур по формуле:

(2)

где Dt = t1 – t2 – наибольшая разность температур между теплоносителем и материалом; Dt’’ = t’’1 – t’’2 – наименьшая разность температур между теплоносителем и материалом.

Если температуры теплоносителей изменяются незначительно и когда Dt’’/Dt > 0,6, то средний температурный напор определяют как среднее арифметическое из крайних напоров:

(3)

Правильный выбор взаимного движения теплоносителя и материала имеет существенное значение для экономного проведения процесса теплообмена.

При противотоке материал с той же начальной температурой, что и при прямотоке, в конце процесса может нагреться до более высокой температуры. Из уравнения теплового баланса следует, что при данных условиях, разница в расходах тепла будет определяться только потерями тепла с отходящими материалами. Так как при противотоке эти потери выше и больше температура отходящего материала, то и расход тепла на тепловую обработку материала при противотоке выше, чем при прямотоке. Отсюда следует, что с точки зрения расхода тепла прямоток выгоднее, чем противоток.

В промышленности строительных материалов противоток применяют чаще, чем прямоток. Это связано со следующими соображениями:

· большинство материалов, подвергаемых тепловой обработке имеют малую прочность и не допускают больших перепадов температур между теплоносителем и материалом;

· при противотоке средний температурный напор больше, чем при прямотоке, следовательно, скорость теплообмена также больше. Следовательно, времени на обработку материала при прочих равных условиях при противотоке требуется меньше, чем при прямотоке.

Поэтому при выборе схемы подачи теплоносителя следует исходить не только из экономичности теплового процесса как такового, но и учитывать потери от брака продукции и возможный выигрыш в производительности тепловой установки.







Дата добавления: 2015-09-07; просмотров: 1100. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия