Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принцип действия





Так как турбобур устанавливают непосредственно над породоразрушающим инструментом, то источником энергии и крутящего момента является давление потока жидкости, движущейся под напором поверхностного насоса.

Поток промывочной жидкости через бурильную колонну подается в первую ступень турбобура. В статоре первой ступени происходит формирование направления потока жидкости, то есть жидкость, пройдя каналы статора, приобретает направление. Таким образом, статор является направляющим аппаратом турбины.

Потоки жидкости из каналов статора поступают на лопатки ротора под заданным углом и осуществляют силовое воздействие на ротор, в результате которого энергия движущейся жидкости создает силы, стремящиеся повернуть ротор, жестко связанный с валом турбины. Поток жидкости из каналов ротора первой ступени поступает на лопатки направляющего аппарата второй ступени, где вновь происходят формирование направления движения потока жидкости и подача её на лопатки ротора второй ступени. На роторе второй ступени также возникает крутящий момент.

В результате жидкость под действием энергии давления, проходит все ступени турбины турбобура и через специальный канал подводится к породоразрушающему инструменту. В многоступенчатых турбобурах крутящие моменты всех ступеней суммируются на валу. В процессе работы турбины на статорах, закрепленных неподвижно в корпусе турбобура, создается реактивный момент, равный по значению, но противоположный по направлению. Реактивный момент через корпус турбобура передается на бурильные трубы и осуществляет их закручивание на определенный угол, зависящий от жесткости и длины бурильной колонны.

В турбинном бурении наибольшая величина крутящего момента обусловлена только сопротивлением породы вращению долота (труб и механизмов между долотом и турбобуром в случае их установки). В роторном бурении максимальный крутящий момент труб определяется сопротивлением породы вращению долота, сопротивлением трению труб о стенки скважины и вращающейся жидкости и инерционным эффектом упругих крутильных колебаний. Максимальный крутящий момент в трубах, определяемый расчетом турбины (значением ее тормозного момента), не зависит от глубины скважины, числа оборотов долота, осевой нагрузки на долото и механических свойств проходимых горных пород. Практика применения турбобуров показывает, что стойкость труб примерно в 10 раз превышает стойкость труб в роторном бурении.
В турбинном бурении коэффициент передачи мощности от источника энергии к долоту значительно выше, чем в роторном. Идея использования гидравлического двигателя для бурения скважин возникла в 80-е годы XIX в: первый патент на турбину для бурения нефтяных скважин был взят в 1873 г. Гроссом. В 1890 г. Г.Г. Симченко (Баку) разработал проект первого забойного круговращательного гидравлического двигателя.
В начале 1900-х годов был разработан и использован на практике для быстроударного бурения в твердых породах забойный гидравлический таран, создававший 500 — 600 ударов в минуту по забою. В 1923 г. М.А. Капе-люшников разработал (совместно с СМ. Волохом и Н.А. Корневым) турбинный аппарат для бурения скважин, названный турбобуром Капелюш-никова. Он развивал мощность до 12 л.с. и представлял собой гидравлический двигатель, выполненный на базе одноступенчатой осевой турбины, вал которой через промежуточный многоярусный планетарный редуктор приводил во вращение долото. Проблема реализации турбинного бурения была решена П.П. Шумиловым, Р.А. Иоаннесяном, Э.И. Тагиевым и
М.Т. Гусманом. Позднее, благодаря работам ВНИИБТ, турбинное бурение приобрело общее признание.
Успехи современного турбинного бурения главным образом зависят от возможности реализации оптимальных режимов отработки новых конструкций высокопроизводительных долот, созданных в последнее время1.
Турбобур — машина быстроходная. Поэтому большое значение имеют работы, направленные на создание низкооборотных турбобуров, способных эффективно отрабатывать шарошечные долота с герметизированными мас-лонаполненными опорами типов ГНУ и ГАУ.
В области турбоалмазного бурения особую актуальность приобретает создание высокомоментных турбобуров для работы с новыми долотами с поликристаллическими алмазными режущими элементами типа Stra-topax.
Современный турбобур должен обеспечивать:
1. Достаточный крутящий момент при удельных расходах жидкости

не более 0,07 л/с на 1 см2 площади забоя.
2. Устойчивую работу при частотах вращения меньше 7 с"1 для шаро­шечных и 7 — 10 с"1 для алмазных долот.
3. Максимально возможный КПД.
4. Срабатывание перепада давления на долоте не менее 7 МПа.
5. Наработку на отказ не менее 300 ч.
6. Долговечность не менее 2000 ч.
7. Постоянство энергетической характеристики по меньшей мере до

наработки на отказ.
8. Независимость энергетической характеристики от давления и тем­

пературы окружающей среды.
9. Возможность изменения реологических свойств бурового раствора в

процессе долбления.
10. Возможность введения в буровой раствор различных наполнителей

и добавок.
11. Возможность осуществления промывки ствола скважины без вра­

щения долота.
12. Возможность проведения замеров траектории ствола скважины в

любой точке вплоть до долота без подъема бурильной колонны.
13. Стопорение выходного вала с корпусом в случае необходимости и

освобождение от стопорения.
14. Гашение вибраций бурильного инструмента.
15. Экономию приведенных затрат на 1 м проходки скважины по

сравнению с альтернативными способами и средствами бурения.
Понятно, что в одной конструкции все или большую часть этих требований воплотить очень сложно. В то же время для одного и того же диаметра целесообразно иметь возможно меньшее количество типов турбобуров.
В начале 50-х гг. в связи с увеличением глубин скважин стали стремиться к увеличению числа ступеней турбины для снижения частот вращения долот. Появились секционные турбобуры, состоящие из двух — трех секций, собираемых в одну машину непосредственно на буровой. Секции свинчивали с помощью конической резьбы, а их валы соединяли сначала
конусными, а затем конусно-шлицевыми муфтами. Осевая опора секционного турбобура устанавливалась в нижней секции.
В дальнейшем, с целью упрощения эксплуатации турбобуров, осевую опору вынесли в отдельную секцию — шпиндель. Это усовершенствование позволило производить смену на буровой наиболее быстроизнашиваемого узла турбобура — его опоры.
Секционные шпиндельные турбобуры типа ЗТСШ в настоящее время серийно выпускаются машиностроительными заводами Минхиммаша с диаметрами корпуса 172, 195 и 240 мм.
В конце 50-х гг. во ВНИИБТ были начаты интенсивные исследования по разработке опоры качения турбобура. Дело в том, что резинометалличе-ская пята, хорошо работающая при использовании в качестве бурового раствора воды или буровых (глинистых) растворов с относительно низким содержанием твердой фазы, а также при невысоких значениях перепада давления на долоте, в случае применения утяжеленных или сильно загрязненных буровых растворов существенно искажала выходную характеристику турбобура, что в свою очередь снижало эффективность турбинного способа бурения.
В начале 60-х гг. Р.А. Иоаннесяном, Д.Г. Малышевым и Ю.Р. Иоанеся-ном была создана упорно-радиальная шаровая опора турбобура типа 128 000, представляющая собой многоступенчатый шарикоподшипник двухстороннего действия.
Турбобуры с шаровой опорой серии А в настоящее время серийно выпускаются машиностроительными заводами Минхиммаша с диаметрами корпуса 164, 195 240.
Дальнейшее совершенствование конструкций турбобура связано с появлением новых высокопроизводительных шарошечных долот с герметизированными маслонаполненными опорами. Для эффективной отработки этих долот требуются частоты вращения около 2,5… 5 с"1. Это привело к созданию целого ряда новых направлений в конструировании турбобуров:
с системой гидродинамического торможения;
многосекционных;
с высокоциркулятивной турбиной и клапаном-регулятором расхода бурового раствора;
с системой демпфирования вибраций;
с разделенным потоком жидкости и полным валом;
с плавающей системой статора;
с тормозной приставкой гидромеханического типа;
с редукторной вставкой.
Появились также гидравлические забойные двигатели объемного типа — винтовые.
Среди конструкторов турбобуров еще нет единого мнения о наиболее эффективном и перспективном направлении развития техники турбинного способа бурения. С целью объективной оценки новых конструкций и выбора лучшей из них для широкого внедрения в серийное производство проводятся сравнительные испытания макетных образцов новых забойных двигателей.

 

 







Дата добавления: 2015-09-07; просмотров: 757. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия