Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

A) НАИВНЫЕ b) ТРЕНИРОВАННЫЕ





Рис. 5.3. Изменения в местной активации мозга, как функция знакомства с тестом. Правое полушарие особенно активно в начале теста (а), с тренировкой эта активация уменьшается (b). (Адаптировано из: Martin А., Wiggs С. L., Weisberg J. Modulation of human medial temporal lobe activity by form, meaning, and experience // Hippocampus. 1997. Vol. 7, № 6. P. 587-593.)

 

Аналогичные результаты сообщила группа британских специалистов по нейронауке25. Как при распознавании лиц, так и при распознавании символов, столкновение с незнакомыми объектами сопровождалось возрастанием активации правой затылочной области (fusiform gyrus). В противоположность этому, возрастающее знакомство с объектами было связано с уменьшением правой затылочной активации и увеличением левой затылочной активации. Как и в исследовании Мартина, эффект новизны-привычности независим от природы объекта. Он имеет место как для символов (которые, согласно ортодоксальной трактовке, должны быть привязаны к левому полушарию), так и для лиц (которые, согласно ортодоксальной трактовке, должны быть привязаны к правому полушарию).

Используя PET, Голд и его коллеги изучали изменения в паттернах зонального мозгового кровотока (rCBF) в ходе изучения сложной «лобной» задачи (комбинация отсроченной реакции и отсроченного изменения) у здоровых испытуемых26. Сравнивались ранние (наивные) и поздние (тренированные) стадии кривой обучения. Активация лобных долей была очевидна на обеих стадиях, но она была значительно выше на ранней стадии, чем на поздней. Особенно примечательно было изменение относительной активации. На ранней стадии rCBF- активация была больше в префронтальных областях правого полушария, чем левого. На поздней стадии картина была обратной, показывая большую rCBF -активацию префронтальных областей левого полушария по сравнению с правым. Это сопровождалось общим снижением префронтальной активации.

Шадмер и Холкомб изучали PET rCBF- корреляты обучения сложному моторному навыку, требующему от испытуемого умения предсказывать поведение робототехнического устройства и управлять им27. Повышение активности относительно исходных условий на ранних стадиях обучения было отмечено в префронтальной области коры правого полушария (средняя лобная извилина). В противоположность этому, повышение активности на поздних стадиях тренировки было отмечено в задней теменной области коры левого полушария, левой дорзальной премоторной коре и правой передней коре мозжечка.

Хайер и его коллеги изучали регистрируемые PET корреляты — показатели скорости метаболизма глюкозы (GMR) — при обучении популярной пространственной головоломке (Тетрис)28. После ежедневных тренировок с Тетрисом на протяжении четырёх-восьми недель, GMR в поверхностных областях коры понижался, несмотря на семикратное улучшение уровня игры. Испытуемые, в наибольшей степени улучшившие своё мастерство игры в Тетрис, демонстрировали после тренировки наибольшие понижения GMR в различных, зонах правого полушария.

Берне, Коэн и Минтун изучали PET rCNF- корреляты обучения и переобучения правилам искусственной грамматики29. Вначале вводилась грамматика A, затем следовала грамматика B. Различие между двумя грамматиками было слишком трудноуловимым для испытуемых, чтобы они могли осознать переход. Последовательные паттерны активации регистрировались в ходе обучения сначала грамматике A, а затем грамматике В. Обучение грамматике А характеризовалось начальным подъёмом активации в правом вентральном стриатуме, левой премоторной области и в структурах переднего отдела левой поясной извилины, с последующим снижением активации. В противоположность этому, было отмечено постепенное повышение активации в правой дорзолатеральной префронтальной и правой заднетеменной области. Введение грамматики B вело ко второму подъёму активации в левой премоторной области, в структурах переднего отдела левой поясной извилины и правом вентральном стриатуме, с последующим её снижением.

Райкл и его коллеги изучали регистрируемые PET rCBF- корреляты лингвистической задачи (нахождение подходящих глаголов для предъявляемых визуально существительных)30. Вначале предъявлялся список существительных (условие наивности), затем, после значительной тренировки, этот список заменялся новым списком (условие новизны). Наивное состояние характеризовалось максимальной активацией передней цингулярной, левой префронтальной, левой височной и правой мозжечковой коры. После упражнений активация практически исчезала и частично восстанавливалась во время условия новизны, с предъявлением нового списка существительных. Дополнительный анализ обнаружил значительную активацию правой половины мозжечка во время условий наивности и новизны, но не после тренировок. В противоположность этому, значительная активация срединного отдела левой височной доли была представлена после тренировок, но не во время условий наивности и новизны.

Тульвинг и его коллеги изучали PET rCBF- корреляты новизны и привычности в распознавании лиц31. Привычность ассоциировалась с двусторонней активацией в широкой сети височных, теменных и затылочных зон. Новизна ассоциировалась с явно асимметричной, правой, а не левой, активацией гиппокампальных и парагиппокампальных структур.

Таким образом, большое количество данных указывает в одном направлении, и существует впечатляющее согласование между старыми «низкотехничными» тахистоскопическими и дихотическими методами и самыми современными методами функциональной нейровизуализации. Похоже, что мозговой оркестр разделён на две группы музыкантов. Те, кто сидят справа от прохода, быстрее осваивают новый репертуар, но в длительной перспективе и при должной тренировке те, кто находятся слева от прохода, достигают большего совершенства. С точки зрения корпоративной аналогии, большая организация, какой является мозг, состоит из двух основных отделов: один занимается относительно новыми проектами, а второй ведёт устоявшиеся, продолжающиеся производственные линии. В действительности каждое полушарие мозга вовлечено во все когнитивные процессы, но их относительная степень вовлечения варьируется в соответствии с принципом новизны-рутины.

Сдвиг центра когнитивного контроля от правого полушария к левому совершается в разных временных масштабах: от минут или часов, как в случае исследований с обучением в рамках одного эксперимента, до лет и десятилетий, как при обучении сложным умениям и кодам, включая язык. Этот сдвиг может быть выделен даже в масштабе, превышающем рамки жизни индивида. Можно предполагать, что вся история человеческой цивилизации характеризовалась относительным сдвигом когнитивного акцента с правого полушария к левому вследствие накопления готовых к применению «шаблонов» различного рода. Эти когнитивные шаблоны хранятся вовне, благодаря различным культурным средствам, включая язык, и интернализуются (переходят во внутренний план) в ходе обучения в качестве различных когнитивных «полуфабрикатов». Любая попытка выразить культурно-историческую психологию Выготского32 в нейроанатомических терминах неизбежно приводит к этому выводу. В более поэтическом, метафорическом тоне, несколько схожее заключение было сделано Джулианом Джейнсом в его описании «двухкамерной психики» с «голосами богов», исходящими из правого полушария, чтобы указать нашим предкам путь сквозь новые ситуации тысячи лет назад33.


Проблема Ноя и ландшафты мозга

На протяжении нескольких последних десятилетий полушарная специализация превратилась в модную тему популярной литературы. Широкое распространение получили такие понятия как «правомозговая» и «левомозговая» терапия, «правомозговые» и «левомозговые» черты, «правомозговые» и «левомозговые» личности. Но важно понять, что два полушария имеют намного больше общего, чем различного. Исполнители, сидящие в сходных позициях по обеим сторонам прохода, играют на сходных инструментах. Полушарная специализация является не чем иным, как двумя параллельными вариациями на одну и ту же фундаментальную тему.

В соответствии с этой темой, затылочные доли вовлечены в зрение, височные — в звуковое восприятие, теменные — в тактильное и соматосенсорное восприятие. Но человеческий мозг — это больше, чем собрание узко специализированных сенсорных устройств. Мы способны распознавать сложные формы, понимать язык и анализировать математические соотношения. Что является нейронным базисом этих и других сложных психических функций? Как мы увидим, оркестр состоит из многих исполнителей, чей вклад в общий ансамбль не поддаётся простым определениям и чьё месторасположение в оркестре является одновременно и сложным, и переменчивым.

Традиционно специалисты по нейронауке использовали эффекты повреждения мозга для того, чтобы понять, как работает нормальный мозг. В самой упрощённой форме логика такого исследования продвигается следующим образом. Предположим, что повреждение области мозга A причиняет ущерб когнитивной функции A ', но не когнитивным функциям B ', C ' или D ',. В отличие от этого, повреждение области B В причиняет ущерб когнитивной функции B ', но не когнитивным функциям A ', C ' или D '; и так далее. Тогда мы можем заключить, что область мозга A ответственна за когнитивную функцию А ', область мозга B — за когнитивную функцию В ', и так далее.

Этот метод называется принципом двойной диссоциации. Этот проверенный временем метод лежит в основе классической нейропсихологии. К настоящему времени он внёс больший вклад в наше понимание сложных отношений между мозгом и когнитивной деятельностью, чем любой другой метод. Однако он уязвим во многих аспектах. В сильно взаимосвязанном мозге повреждение одной области может затронуть работу других областей. Раненый мозг претерпевает различные формы естественной реорганизации («пластичность»), которая делает его весьма иллюзорной моделью нормальной функции. Несмотря на эти недостатки, метод повреждений позволил получить очень много полезной информации относительно мозга, и все наши сегодняшние теории о функции мозга до некоторой степени базируются на этой информации.

Эффекты влияния повреждений мозга на познавательную деятельность помогают ответить не только на вопросы «где», но и на вопросы «что». Наблюдая различные формы дезинтеграции познавательной деятельности, мы начинаем понимать, как природа «расщепляет» психические функции на специфические когнитивные операции, и как эти операции распределяются в мозге.

В течение нескольких последних лет появление мощных методов функциональной нейровизуализации изменило направление нейронауки. Как указывалось ранее, эти методы включают позитронно-эмиссионную томографию, компьютерную единичнофотонную эмиссионную томографию и особенно функциональное магнитно-резонансное сканирование. Основываясь на различных физических принципах, от радиоактивного излучения вещества до изменений локальных магнитных полей, эти методы объединяет одна общая черта. Они позволяют нам прямо наблюдать различные формы физиологической активности в различных частях мозга во время решения человеком различных когнитивных задач. Выдающийся американский психолог Майкл Познер сравнил влияние функциональной нейровизуализации на когнитивную нейронауку с влиянием телескопа на астрономию. Так же, как изобретение телескопа в начале семнадцатого века сделало возможным прямое наблюдение макрокосма, внедрение функциональной нейровизуализации в конце двадцатого века впервые в истории позволило нам прямо наблюдать мыслительные процессы.

Функциональная нейровизуализация имеет свои ограничения. Большинство её методов не измеряет нейронную активность прямо. Вместо этого они используют непрямые (косвенные) измерения, или «маркеры»: кровообращение, глюкозный метаболизм и так далее. Однако имеются веские свидетельства в пользу того, что эти маркеры точно отражают уровни нейронной активности. Другое ограничение относится к нашей способности отождествлять источники активации, соотнося различные аспекты этой активации со специфическими психическими операциями. Специалисты по нейронауке разрабатывают все более мощные статистические методы для решения этой проблемы.

Ещё одна проблема касается отношения между сложностью задачи и усилиями, требующимися для её разрешения, и силой сигнала, регистрируемой томографом (fMRI, PET, SPECT). По мере ознакомления с задачей и её освоением, сила сигнала обычно снижается34. В принципе, это может означать, что высокоавтоматизируемая, не требующая усилий, «лёгкая» задача не сможет генерировать заметный сигнал. Но лёгкие и не требующие усилий познавательные задачи не являются, так сказать, внечерепными. Они также происходят в нашей голове и повреждения мозга продолжают влиять на них. Фактически, большая часть наших психических процессов не требует усилий и протекает автоматически, как если бы они управлялись автопилотом. В противоположность этому, требующие усилий и контролируемые сознанием познавательные задачи представляют только малую часть нашей психической жизни.

Весьма возможно, что достигнутая на сегодня разрешающая способность устройств функциональной нейровизуализации ограничена теми познавательными задачами, которые «требуют усилия», в то время как «не требующие усилий» автоматические задачи не производят различимого сигнала. Большая часть относительно сложных когнитивных активационных задач, используемых в экспериментах, вероятно состоит из как требующих, так и не требующих усилий когнитивных компонентов. Поэтому их активационные «ландшафты» могут быть обманчивыми, так как они отражают изолированные вершины с невидимыми долинами между ними. То, что вы видите, может быть намного меньше того, что происходит на самом деле. Попытки определять паттерны мозговой активации в условиях познавательной задачи, базируясь на данных функциональной нейровизуализации, можно уподобить попыткам Ноя представить себе ландшафт Месопотамии, глядя на вершину горы Арарат, выступавшую из воды после Всемирного потопа. Понимание отношений между силой сигнала и уровнем сложности в строго количественных задачах поможет интерпретировать данные об активации когнитивных функций, получаемые с помощью fMRI и PET. Доступные нам технологии нейровизуализации являются неоценимым инструментом когнитивной нейронауки в той мере, в какой мы осознаем эти ограничения и не принимаем данные слишком некритично и буквально.

Внедрение новых научных методов всегда увлекательно. Но в то же самое время оно угрожает стабильности установленных знаний. Большая часть научных открытий скорее расширяет и разрабатывает ранее накопленные знания, нежели опровергает их. Точки разрыва в потоке научного прогресса относительно редки. Когда они случаются и старые утверждения отвергаются в пользу радикально отличающихся от них, мы говорим, что наступил «сдвиг парадигмы». Историки науки горячо обсуждали отношения между прогрессом в научных методах и концептуальными прорывами. Что движет чем? Не каждый новый научный метод, будь он даже революционным, ведёт к немедленному концептуальному сдвигу парадигмы. Хорошая новость состоит в том, что современные открытия функциональной нейровизуализации в целом подтвердили более ранние представления, основанные на изучении повреждений мозга. Плохая новость заключается в том, что до настоящих концептуальных прорывов нам ещё далеко.


Модулярное помешательство

В начале 1980-х годов Галль и его френология пережили странное возрождение под именем «модулярности»35. Повреждения мозга часто приводят к очень специфическим и узким когнитивным дефектам. Они могут затрагивать имена объектов, принадлежащих к специфической категории (например, цветов или животных), но не влиять на все другие имена объектов. Или они могут ухудшать распознавание специфического класса объектов, но не других объектов. Многие годы нейропсихологи были увлечены такими феноменами, которые известны как «сильные диссоциации». Некоторые из описанных сильных диссоциаций были необычными. В одном исследовании пациент, который был не в состоянии назвать персик или апельсин, без проблем называл счёты и сфинкса!

Сильные диссоциации весьма редки и большинство клиницистов ни разу не сталкивается с ними в ходе своей карьеры. Тем не менее, многие учёные считали, что сильные диссоциации представляют особый интерес и информативность для понимания мозговых механизмов когнитивной деятельности. Нейропсихологические исследования и теоретическая работа стали крайне зависимыми от поиска таких «интересных случаев», теоретическое значение которых стало символом веры. Многочисленные обычные случаи, которые надо было просеять в поиске малого числа драгоценных случаев сильных диссоциаций, отбрасывались как неинформативные.

Это хождение по кругу породило вывод, что кора состоит из различных модулей, каждый из которых отвечает за высокоспециализированную когнитивную функцию. Выдвигалось предположение, что модули инкапсулированы, отделены друг от друга чёткими границами и весьма ограниченно взаимодействуют друг с другом. Случаи высокоспецифических когнитивных дефицитов (дисфункций) интерпретировались как поломки узкоспециализированных модулей, а существование таких случаев принималось как доказательство существования модулей.

В соответствии с этой схемой, кора понималась как мозаика из многочисленных модулей, разделённых чёткими границами, с ограниченным взаимодействием между ними. Каждый модуль наделялся высокоспецифичной функцией. Поиск сильных диссоциаций признавался ведущим методом нахождения этих мистических модулей. Для каждой вновь описанной значительной диссоциации постулировался новый модуль, и их список расширялся. Это весьма напоминало расцвет френологии, за исключением того, что сильные диссоциации, вызванные повреждениями мозга, заменив шишки на черепе, стали ведущим источником открытий.

Ошибочность такого подхода становится очевидной, когда понимаешь, что на каждый случай сильной диссоциации приходятся сотни случаев слабой диссоциации, где нарушены сразу многие функции, хотя и в различной степени. Принимая априорное решение о том, что эти гораздо более многочисленные случаи не важны, а важны только сильные диссоциации, специалист неизбежно склоняется к предубеждению в пользу модулярной теории мозга.

В действительности модулярная теория объясняет очень мало, поскольку, не обладая способностью свести многообразие специфических фактов к упрощающим общим принципам, она не удовлетворяет фундаментальным требованиям любой научной теории. Подобно религиозным языческим верованиям древности, она просто создаёт параллельную номенклатуру, изобретая новое божество для каждого предмета. Тем не менее, подобно каждому упрощённому представлению, она соблазняла иллюзорной привлекательностью немедленной объяснимости — путём введения нового модуля для каждого нового наблюдения!

Сильные диссоциации, по их крайней редкости, скорее отражают идиосинкразии индивидуальных когнитивных стилей и условий и имеют мало отношения к инвариантным принципам мозговой организации. Если это так, то тогда редкие сильные диссоциации являются не чем иным, как плохо интерпретируемыми статистическими отклонениями.

Вот подумайте: мой родной язык — русский, английский я выучил в подростковом возрасте. Моё владение обоими языками варьирует в зависимости от обстоятельств и изобилует сильными диссоциациями. Утомление, опьянение или болезнь оказывают чёткое и разнонаправленное воздействие на мою способность общаться на двух языках. На английском языке моё владение конкретным лексиконом (например, названиями предметов домашнего обихода, которые я выучил ребёнком) становится весьма неуверенным, но моё владение абстрактным лексиконом (т.е. научной терминологией, которую я выучил во взрослом возрасте) остаётся неизменным. На русском языке происходит обратное: я начинаю спотыкаться в попытках передать понятия высокого уровня, но мой повседневный язык остаётся неуязвимым. Определённые части лексикона (например, названия цветов и рыб) ухудшаются в равной степени на обоих языках, потому что я никогда их толком не знал ни на одном из этих языков. У моего хорошего друга, известного психолога из южной Калифорнии, родным языком является английский и он отлично владеет русским. Он сообщает о столь же сильных, зависящих от состояния, диссоциациях в обоих языках, сходных по характеру, но не по специфике.

Если кому-то из нас не повезёт и его поразит инсульт, это повлияет на когнитивную нейропсихологическую теорию по-разному, в зависимости от того, кто из нас будет обследоваться и на каком языке. Будут точно документированы и полностью описаны сильные диссоциации, обусловленные абсолютно индивидуальными обстоятельствами наших личных биографий, которые не имеют никакого значения для нейронауки.

Верно, что билингвизм сравнительно мало распространён. Однако у различных людей могут играть роль другие необычные когнитивные факторы. Комбинация этих исключений может вызывать самые сильные диссоциации. Каждый индивидуальный когнитивный профиль — это ландшафт, состоящий из вершин (сильные качества) и долин (слабые качества), и разрывы в их высоте могут быть весьма драматичны. Моё почти полное невежество относительно названий рыб и цветов в моем родном русском языке — показательный случай.

Влияние массивного неврологического расстройства на весьма пересечённый когнитивный ландшафт можно сравнить с наводнением, которое затапливает долины, но не достигает вершин. Плавные переходы между индивидуальными сильными и слабыми точками покажутся сильными диссоциациями и легковерный нейропсихолог будет затоплен морем артефактов.


Когнитивные градиенты и когнитивные иерархии

Для объяснения работы новой коры (неокортекса) часто используется дидактический приём. Этот приём прост, но эвристически эффективен. Он базируется на понятии трёхуровневой иерархии в новой коре.

В заднем отделе полушария первый уровень иерархии состоит из первичных сенсорных проекционных зон. Они организованы «стимулотопическим» образом, что приблизительно означает поточечную проекцию поля стимулов на поле коры. Проекции являются непрерывными (или, как говорят математики, «гомеоморфными»). Это означает, что смежные точки поля стимулов проецируются на смежные точки кортикального пространства. Первичные области сенсорной проекции включают ретинотопическую проекцию в зрительной коре затылочной доли, соматотопическую проекцию в соматосенсорной коре теменной доли и «частотнотопическую» проекцию в слуховой коре височной доли. В лобной доле первый уровень иерархии представлен моторной корой, которая также является соматотопической. Соответствие между пространствами стимулов и первичными проекционными зонами топологически корректно, но метрически деформировано. Различные области коры связаны с различными частями стимульного пространства не на основе их относительных размеров, но на основе их относительной важности.

Второй уровень иерархии состоит из областей коры, которые вовлечены в более сложную переработку информации. Эти области не организованы стимулотопическим образом. Однако каждая из этих областей все ещё привязана к конкретной модальности. Эти области коры, называемые модально-специфическими отделами ассоциативной коры, являются смежными с первичными проекционными зонами коры.

Наконец, третий уровень иерархии состоит из областей коры, которые появляются на поздних стадиях эволюции мозга и считаются играющими центральную роль в наиболее сложных аспектах переработки информации. Они не связаны с какой-то одной модальностью. Вместо этого, функцией этих зон коры является интеграция входных сигналов, приходящих от многих модальностей. Они называются гетеромодальной ассоциативной корой и включают нижневисочную кору, нижнетеменную кору и, разумеется, префронтальную кору.

Когда эффекты от повреждений мозга изучаются реалистически и без явных предубеждений, возникает картина мозга, весьма отличная от модулярной. Повреждение смежных частей коры порождает сходные, но не идентичные когнитивные потери. Этот паттерн свидетельствует о том, что смежные области неокортекса выполняют сходные когнитивные функции, и что постепенный переход от одной когнитивной функции к другой соответствует постепенной, непрерывной траектории на поверхности коры. Принцип, по которому когнитивные функции распределены по коре, является градуированным и непрерывным, а не модулярным и инкапсулированным. Этот принцип организации, который я назвал «градиентным», в особенности применим к гетеромодальной ассоциативной коре; возможно в меньшей степени к модально-специфическим отделам ассоциативной коры и менее всего к первичной проекционной коре, которая сохраняет сильно модулярные свойства.

Понятие когнитивного градиента впервые возникло у меня в конце 1960-х годов, когда я начал слушать курс нейропсихологии. Вместе с другими студентами я столкнулся с калейдоскопом нейропсихологических синдромов, бесконечным и несвязанным перечнем. Я чувствовал, что мне требуется автодидактический метод, который позволил бы мне организовать эти нейропсихологические синдромы в связанную упрощающую схему. Градиентная модель превосходно служила этой цели, так как она позволяла мне скорее интерполировать синдромы, чем запоминать их наизусть. Затем я пришёл к пониманию того, что градиентное понятие корковой функциональной организации является также мощным концептуальным и объяснительным средством в осмыслении мозга и мозговых расстройств, значительно более мощным, чем доминировавший в то время взгляд на кору как состоящую из дискретных функциональных областей. Наряду со всем прочим, мои градиенты позволяли мне точно предсказывать эффекты от конкретных повреждений мозга, ещё не видя их эмпирически, и мне эта игра доставляла большое удовольствие. Это также помогало объяснить, как приобретали свои функции различные части новой коры. Я начал думать о моих градиентах как о нейропсихологическом аналоге периодической таблицы элементов Менделеева.

Первым человеком, с которым я поделился моей градиентной теорией, был Эхтибар Джафаров из Баку. Эхтибар, тоже студент факультета психологии Московского государственного университета, несколькими курсами младше меня, был моим протеже. Блестящий эрудит и математический вундеркинд, он служил показательным примером культурных противоречий. Обладая творческим и строгим умом, полностью адаптированным к западной философии и литературе, он, тем не менее, сохранял свои восточные нравы.

Благодаря стечению обстоятельств, я, вероятно, несу ответственность за поступление Эхтибара в университет. Аспирантов часто просили интервьюировать абитуриентов, что было частью процедуры приёма. Деканат предупредил нас, что факультет психологии имеет особую привлекательность для «психически неустойчивых» абитуриентов. В свете этого опасения и в духе культуры, в которой мы жили, мы были проинструктированы отслеживать абитуриентов-«психов» и тайком делать на их личных делах магическую пометку — чёрную метку мечтаниям абитуриента о Московском университете.

И вот в знойный июльский полдень я сидел в душной аудитории старого здания Московского университета на Манежной площади. Как я ни заставлял себя слушать невнятную речь юного оболтуса, сидевшего напротив меня, моё внимание отвлекалось. В это время моя приятельница Наташа Калита за смежным столом интервьюировала безукоризненно одетого, долговязого южанина с черными как смоль волосами. Юноша, которому на вид не было ещё двадцати, говорил на превосходном русском языке, но с характерным кавказским акцентом. От скуки я начал прислушиваться к их разговору. Молодой южанин говорил о теореме Гёделя, в то время как Наташины все более соловевшие глаза выражали полное непонимание. Когда южанин перешёл к машине Тьюринга, я увидел, как рука Наташи потянулась к магическому карандашу. Но я уже почувствовал родственный дух и очень быстро предложил Наташе поменяться абитуриентами. Она взяла моего бессвязного оболтуса, а я закончил интервью с молодым южанином.

Я написал хвалебное заключение, и Эхтибар стал студентом-первокурсником, возможно, самым ярким на факультете психологии. В результате описанного знакомства он привязался ко мне и видел во мне своего защитника. Между нами быстро появилось взаимное интеллектуальное уважение и мы стали обсуждать наши далеко идущие идеи и теории.

Когда несколькими годами позднее я был готов покинуть страну, Эхтибар прилетел из Москвы в Ригу, чтобы попрощаться. Мы провели вечер в тихой беседе в гостиной квартиры моих родителей на третьем этаже. Как «персона нон грата» и «изменник Родины», я подозревал, что квартира прослушивалась, и мы предусмотрительно удалили из комнаты и отключили телефон (большинство советских людей считали телефон самым распространённым устройством для прослушивания квартир). Много лет спустя Эхтибар рассказал мне, что по возвращении в Москву он был вызван в КГБ, где его спрашивали о целях его поездки ко мне и предъявляли подробное содержание нашей прощальной беседы как доказательство всеведения органов госбезопасности. Я не знаю, как они записали на магнитофон нашу беседу. Я могу только предполагать, что на улице рядом с домом был припаркован грузовик, начинённый подслушивающим оборудованием. Хотя у меня оставалось мало иллюзий о правителях моей страны, я нашёл эту историю ошеломляющей, но скорее печальной, чем возмутительной. Я не был активным диссидентом; по всем рациональным стандартам, я был политическим никем. И это показатель того, как использовались ресурсы в стране, не славившейся своим богатством, всего за полтора десятилетия до её окончательного распада под своей собственной тяжестью.

Итак, Эхтибар был тем, кому я поведал мою доморощенную градиентную теорию, которая резко отличалась от всего, что нам преподавали о мозге. Это было сделано стильно, за обедом с красным грузинским вином и видом на панораму Москвы из ресторана, расположенного на верхнем этаже здания гостиницы Министерства обороны, которое студенты называли «Пентагоном», неподалёку от университетского городка. Выбор места для обеда был весьма ироничным, так как я — с молчаливого согласия Лурии — как раз тогда пытался избежать советского военного призыва, что было весьма опасным предприятием в то время и в том месте.

Эхтибар был впечатлён идеей и поддержал её. Поэтому я решил продвинуть её далее и на следующий день обсудил её с Александром Романовичем. Я всегда думал о моей градиентной модели как о прямом и непосредственном порождении подхода самого Лурии к отношениям между мозгом и психикой. Но, к моему удивлению, он не стал рассматривать её в таком свете и фактически отклонил в пользу более традиционной «локализационной» концепции. Одна из хороших черт Лурии заключалась в том, что с ним можно было не соглашаться в научном споре без риска подорвать личные отношения. Даже когда он не разделял ваши идеи, он не чувствовал, что они ему угрожают. Его реакция не имела ничего общего с раздражением; она могла варьировать в диапазоне от энтузиазма до благожелательного безразличия, и именно последнее было его реакцией на мою теорию.

Мне удалось описать мою градиентную теорию только 15-ю годами позднее, в 1986 году, когда я получил возможность провести год в качестве приглашённого исследователя в Институте высших исследований Еврейского университета в Иерусалиме. Когда журнальная статья, в которой я ввел понятие когнитивного «кортикального градиента», была наконец опубликована в 1989 году36 и затем перепечатана как глава книги37, она была большей частью проигнорирована.

Понятие модулярности было слишком распространённым и привлекало своей простотой. Но сегодня модулярность отступает, а градиентная теория мозговой коры находится на подъёме. Я убеждён, что это является подлинным сдвигом парадигмы в когнитивной нейронауке и, как каждый сдвиг парадигмы, он даётся с трудом. В примечательном эссе «Скотома: забывание и игнорирование в науке» Оливер Сакс уподобляет нынешние изменения в наших взглядах на мозг сдвигу парадигмы в физике в начале двадцатого века38. Это было время, когда ньютонова физика дискретных тел была заменена новой физикой поля — электрического, магнитного и гравитационного.

Как я показываю далее в этой книге, понятие модулярности не следует отвергать полностью. Модулярность, вероятно, адекватно описывает архаический принцип нейронной организации, который позднее в ходе эволюции был подчинён градиентному принципу И если это так, то существует поразительная параллель между эволюцией мозга и интеллектуальной эволюцией того, как мы думаем о мозге. Как и эволюция самого мозга, эволюция наших теорий о мозге характеризовалась сдвигом парадигмы от модулярности к интерактивности.


Вещь есть вещь

Градиентный принцип легче всего понять при анализе двух фундаментальных аспектов нашего психического мира: восприятия и языка. Рассмотрим два альтернативных способа, которыми могут кодироваться психические представления вещей. Согласно первой версии, различные категории вещей (фрукты, цветы, одежда, инструменты и т.д.) кодируются как отдельные «модули», каждый из которых занимает отличное, чётко очерченное местоположение на коре. Согласно второй версии, представление каждой категории вещей распределяется в соответствии с её различными сенсорными компонентами: зрительными, тактильными, звуковыми и т.д.

Первая возможность — это реализация модулярного принципа мозговой организации. Сторонники этого принципа обычно указывают на случаи трудностей восприятия или называния, затрагивающие специфические, изолированные категории предметов. Как указывалось ранее, такие случаи крайне редки, но они существуют. Вторая возможность — это реализация градиентного, непрерывного принципа корковой организации. Чтобы помочь решить, какая из двух альтернатив ближе к истине, мы обратимся к своеобразному классу неврологических расстройств, — к так называемым «ассоциативным агнозиям».

Представьте себе прогулку по универмагу. Вы обнаруживаете, что окружены сотнями объектов, большинство из которых уникально по крайней мере в некотором отношении. Насколько вероятно, что вы уже видели этот конкретный образец галстука, этот конкретный покрой одежды или эту конкретную форму вазы? Вероятно, вы не сталкивались ранее с точными копиями каждого из этих объектов. Тем не менее, вы немедленно распознаете их как представителей некоторых знакомых категорий: галстуки, одежда, вазы. Парадоксальным образом, мы мгновенно узнаем эти объекты, хотя, строго говоря, они являются новыми для нас.

Категориальное восприятие, способность узнавать уникальные объекты как представителей общих категорий, является фундаментальной когнитивной способностью, без которой мы не смогли бы действовать в окружающем нас мире. Мы принимаем эту способность как данность и в большинстве случаев реализуем её автоматически, без усилий и мгновенно. Но в случае заболевания мозга эта фундаментальная способность может оказаться существенно ослабленной, даже если не затронуты первичные ощущения (зрение, слух, тактильные ощущения). Мы называем такие заболевания ассоциативными агнозиями39.

По своей природе наше знание внешнего мира многомерно. Мы можем вызвать зрительный образ зеленой кроны дерева, также как звук листьев, шуршащих на ветру, запах цветущих цветов, ощущение шероховатой коры, которой касаются наши пальцы. Как в случае ассоциативных агнозий страдает способность распознавания предметов? Разделяют ли подобную судьбу различные атрибуты психического представления предмета? Происходит ли перцептив







Дата добавления: 2015-09-06; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия