Объем, скорость и время доступа
Основными задачами производителей всегда было увеличение объема хранящейся на дисках информации и скорости работы с этой информацией. Как увеличить объем диска? Наиболее очевидным решением является увеличение количества пластин в корпусе жесткого диска. Подобным образом обычно различаются модели в пределах одного модельного ряда. Этот способ является наиболее простым и позволяет на одной и той же элементной базе получать диски различной емкости. Но у этого способа существуют естественные ограничения: количество дисков не может быть бесконечным. Увеличивается нагрузка на мотор, ухудшаются температурные и шумовые характеристики диска, вероятность брака растет пропорционально количеству пластин, а значит, труднее обеспечить надежность. Среди промышленно производимых дисков наибольшим количеством пластин обладает SCSI диск SeagateBarracuda 180 - у этого винчестера аж 12 пластин! Есть и рекордсмены в области упрощения устройства дисков - это, например, рассмотренный нами далее Maxtor 513DX и 541DX, у которого один диск, используемый только с одной стороны. Технологически более сложный (и более перспективный) метод увеличения объема - увеличение плотности записи информации. Тут возникает целый ряд технологических проблем. Современные пластины изготовляются из алюминия или даже из стекла (некоторые модели IBM). Магнитное покрытие имеет сложную многослойную структуру и покрыто сверху специальным защитным слоем. Размеры частиц магнитного покрытия уменьшаются, а чувствительность их возрастает. Помимо улучшения параметров самих пластин, существенным усовершенствованиям должна подвергнуться система считывания информации. Необходимо уменьшить зазор между головкой и поверхностью пластины, повысить чувствительность головки. Но и тут законы физики накладывают свои естественные ограничения на предел применения подобных технологий. Ведь размеры магнитных частиц не могут уменьшаться бесконечно. Самый простой способ увеличить скорость считывания - увеличить скорость вращения пластин. По этому пути и пошли конструкторы. Если пластины вращаются с большей скоростью, то за единицу времени под считывающей головкой проходит больше информации. На увеличение скорости считывания влияет также и рассмотренное выше увеличение плотности записи информации. Именно по этой причине SCSI диски, как правило, обладают большей скоростью вращения. Однако на такой скорости сложнее точно позиционировать головку считывания, поэтому плотность записи там меньше, чем на некоторых IDE дисках, а стоят такие диски больше. Так как головка при поиске информации перемещается только поперек диска, она вынуждена "ждать", пока диск повернется и сектор с запрашиваемыми данными окажется доступным для чтения. Это время зависит только от скорости вращения диска и называется временем ожидания информации (latency). Но необходимо понимать, что общее время доступа к информации определяется временем поиска нужной дорожки на диске и временем позиционирования внутри этой дорожки. Увеличение скорости вращения диска уменьшает лишь последнее значение. Для уменьшения времени поиска нужной дорожки совершенствуют привод считывающей головки и… уменьшают диаметр пластин диска. Почти все современные винчестеры выпускаются с пластинами диаметром 2,5 дюйма. Позиционирование головки вообще является отдельной весьма нетривиальной проблемой. Достаточно сказать, что при современной плотности записи приходится учитывать даже тепловое расширение! Таким образом, увеличение скорости вращения диска существенно затрудняет точное позиционирование головки. И в попытках увеличить быстродействие диска иногда приходится жертвовать объемом, используя пластины с меньшей плотностью записи. Неудивительно, что наиболее дорогие и быстрые винчестеры, отличающиеся более высокой скоростью вращения, не используют максимальной технологически доступной на данный момент плотности записи. За скорость приходится платить. Так какому диску отдать предпочтение? При одинаковом объеме большего внимание заслуживают модели с большей плотностью записи, по сравнению с моделями с большим количеством дисков, хотя бы потому, что у них выше линейная скорость чтения/записи (большие файлы читаются быстрее). Скорость доступа к информации напрямую зависит от скорости вращения пластин (быстрее работа с большим количеством мелких файлов). Но увеличение скорости приводит к удорожанию изделий, а иногда приходится жертвовать и плотностью записи. 5. Интерфейсы жестких дисков Развитие интерфейсов винчестеров шло двумя параллельными путями: дешевым и дорогим. Дорогое решение заключалось в создании на плате самого винчестера отдельного интеллектуального контроллера, который бы брал на себя значительную часть работы по взаимодействию с винчестером. Результатом этого подхода явился интерфейс SCSI, который быстро завоевал популярность на рынке серверов. Одним из преимуществ этого подхода являлась возможность подключения к компьютеру значительного для того времени количества устройств, требующих для своей работы широкого канала передачи данных. Простое и дешевое решение - переложить значительную часть операций по вводу-выводу на центральный процессор. У этого решения вполне очевидный недостаток: снижение общей вычислительной мощности системы, особенно заметное при многозадачной работе. А в те времена, когда процессоры не были такими мощными, это сильно ограничивало возможности, в частности, файловых серверов. Результатом воплощения в жизнь этого подхода явился широко распространенный интерфейс IDE. Этот интерфейс был сравнительно дешев и, хотя не был самым производительным, полностью вытеснил другие интерфейсы с рынка дешевых и недорогих систем. Он постепенно развивался, и со временем появились стандарты UDMA, существенно ускоряющие работу винчестеров, интерфейсы IDE стали более интеллектуальными. А так как производительность процессоров росла быстрее производительности винчестеров, то ограничения интерфейса IDE играли все меньшую роль. Тем самым на сегодня мы имеем два типа винчестеров: высокопроизводительные SCSI и "ширпотреб" - IDE. Принципиальных различий в устройстве самих винчестеров SCSI и IDE нет, но исторически сложилось, что SCSI рассчитан на сегмент дорогих серверных решений, поэтому в среднем они быстрее и, как следствие, существенно дороже. Пропускная скорость SCSI значительно выше IDE, целых 160 Мб/с. А IDE работает со скоростью 33, 66 и 133 Мб/с. Соответствующие стандарты называются ATA/33, ATA/66 и ATA/133. В феврале 2000 года на официальном Форуме разработчиков Intel было объявлено о формировании рабочей группы по созданию стандарта последовательного ATA – SATA (Serial ATA).В течение последних восьми идет процесс постепенного вытесненияпараллельного ATA его последовательным собратом SATA. В SATA используется 7-жильный кабель для обмена данными; обмен происходит по 1 биту за такт (в кабеле 1 линия для приема и 1 – для передачи) и 15-жильный силовой кабель. Одним кабелем можно подключить только одно устройство, что отменяет необходимость устанавливать перемычки (джампера) для устройства Master/Slave.Узкий кабель в гораздо большей мере, чем шлейф параллельного ATA, способствует циркуляции воздуха внутри корпуса PC. Но самое главное – это скорость. Стандарт SATA-150 осуществляет передачу со скоростью 150 Мб/с, что в полтора раза выше, чем UDMA/100. Но SATA-300 и SATA-600 предполагают скорости 300 MBps и 600 MBps соответственно. Технология SAS, преемница параллельного интерфейса SCSI, опирается на проверенную временем высокую функциональность своего предшественника и обещает значительно расширить возможности современных систем хранения данных масштаба предприятия. SAS обладает целым рядом преимуществ, не доступных традиционным решениям в области хранения данных. В частности, SAS позволяет подключать к одному порту до 16 256 устройств и обеспечивает надёжное последовательное соединение “точка-точка” со скоростью до 3 Гб/с.
6. Как работают программы восстановления данных Каждый только что удаленный файл все еще находится на жестком диске, но Windows его больше не видит. Если программе восстановления данных необходимо восстановить этот файл, она просматривает загрузочный сектор раздела (PartitionBootSector). В нем содержится вся информация о строении раздела, например размер секторов (как правило, 512 байт) и количество секторов в одном кластере. В разделе NTFS размером более 2 Гбайт в одном кластере содержится четыре сектора. В нашем примере показан небольшой раздел размером 500 Мбайт, у которого каждому сектору соответствует один кластер. Наряду с этой информацией программы восстановления данных сканируют главную таблицу файлов (MasterFileTable, MFT), которая тоже находится в PartitionBootSector. Она представляет собой список всех файлов, находящихся в разделе, в ней содержатся все файловые атрибуты и информация о том, в каких секторах винчестера находятся сами файлы. Те из них, что по размерам менее 1500 байт, записываются прямо в MFT. Для файлов большего объема в MFT есть ссылки на адреса секторов, в которых лежат данные. В начале MFT находятся другие записи, например так называемая битовая карта распределения кластеров (ClusterBitmap), показывающая все используемые кластеры, а также файл плохих кластеров (BadClusterFile), регистрирующий все кластеры с ошибками. Только с 17-й записи начинается собственно описание файлов. Обычно таблица MFT в Windows не видна. Но есть дисковые редакторы, например WinHex, которые показывают содержание MFT в шестнадцатеричных кодах. На картинке (см.ниже) вы видите MFT-запись удаленного файла в HEX-коде. Для программы восстановления данных достаточно этой информации, чтобы восстановить файл. Значения которые программа восстановления файлов находит в MasterFileTable: Эти четыре байта (FileIdentifier) обозначают начало нового файла. Байты до следующего FileIdentifier содержат всю информацию о файле. Эти два байта зарезервированы для флагов, которые дают справку о состоянии файла. Если их значение равно 0, как в нашем случае, это значит, что файл удален. Из этих 16 байт программа восстановления данных узнает, когда файл был создан и в последний раз подвергался изменениям. Эта ссылка на каталог, в котором находится файл (ParentDirectoryRecordNumber). С ее помощью программа-спасатель может включить файл в структуру каталогов. Здесь появляется имя файла, в нашем случае MуPrеsеntаtiоn.pрt. Если эти два байта имеют значение 0, то файл не сжат. Эти восемь байт сообщают размер файла,в нашем случае 56 320 байт. Важнейшая часть записи MFT, называющаяся Dataruns, показывает, где фактически находятся данные. На рисунке 4указано,где находятся данные. Первый байт сообщает, сколько байт необходимо для адреса первого кластера (3 байта) и отображения длины файла во всех кластерах (1 байт). Второй байт содержит длину файла, в нашем примере — 110 кластеров. c. Следующие три байта означают, что файл начинается с кластера 312 555. Последний байт имеет значение 0. Это означает, что файл не фрагментирован. Следовательно, нет никаких дополнительных записей Dataruns. Как программа восстанавливает данные. Теперь у программы восстановления данных есть вся информация, необходимая для успешного восстановления удаленного файла. Она обращается к кластеру 312 555, прочитывает данные в следующих 110 кластерах и сохраняет их под именем Mу Программно-аппаратный комплекс для ремонта HDD ATA, SATA PC-3000 forWindows (UDMA)Назначение PC-3000 for Windows (UDMA) Программно-аппаратныйкомплекс PC-3000 for Windows (UDMA) предназначендлядиагностикииремонта HDD (восстановленияработоспособности) синтерфейсом ATA (IDE) и SATA (Serial ATA 1.0, 2.0), емкостьюот 1 Гбдо 750 Гб, производства: Seagate, Western Digital, Fujitsu, Samsung, Maxtor, Quantum, IBM (HGST), HITACHI, TOSHIBA c форм-фактором 3.5'' - настольныеПК; 2.5'' и 1.8'' - накопителидляноутбуков; 1.0'' - накопителидляпортативнойтехники, синтерфейсом Compact Flash., ккаждомуизкоторыхможно, всвоюочередь, подключитьнесколько HDD. Принципы функционирования Диагностика HDD осуществляется в обычном (пользовательском) режиме и в специальном технологическом (заводском) режиме. Для этого в комплекс PC-3000 forWindows (UDMA) входит набор технологических переходников и адаптеров, которые используются для ремонта HDD и восстановления данных. Для первоначальной диагностики HDD запускается универсальная утилита PC-3000, которая диагностирует HDD и указывает все его неисправности. Далее запускается специализированная (предназначенная только для этого семейства) технологическая утилита, которая и осуществляет ремонт HDD. Непосредственно ремонт HDD заключается в обнаружении и устранении повреждений в служебной зоне, перезаписи Flash ПЗУ, восстановлении системы трансляции, обнаружении дефектных участков магнитных поверхностей и исключении их из рабочего пространства HDD. Весь процесс ремонта можно разделить по пунктам: Диагностика платы электроники HDD, при которой проверяются ПЗУ, находящиеся на плате, проверяется целостность их содержимого и соответствие версии. В случае необходимости производится их перезапись. Данные для записи беруться из эталонных данных в базе PC-3000. Диагностика служебной зоны HDD, которая находится в гермоблоке на минусовых цилиндрах, и выявление разрушенных служебных модулей. Если необходимо, то восстановление поврежденных модулей методом пересчета или их перезапись из эталонных данных базы PC-3000. Поиск дефектных секторов на поверхностях HDD и их скрытие. Скрытие осуществляется за счет резервной зоны HDD, специально предназначенной для этого. Емкость HDD при этом не уменьшается. Процесс программного ремонта HDD максимально информативен и требует от оператора наличия только базовых знаний о строении HDD. При этом он достаточно эффективен - позволяет ремонтировать до 80% всех неисправных HDD. Состав PC-3000 for Windows (UDMA) На рисунке7.2 представлен комплект оборудования PC-3000 forWindows (UDMA), который включает в себя следующие элементы: Плата-тестер PC-3000 UDMA ПО комплекса PC-3000 forWindows (UDMA) Двух портовый адаптер управления питанием PC-3K PWR2 Адаптер PC-USB-TERMINAL Адаптер PC-2" (для 2.5" и 1.8" HDDs) Адаптер PC-CF (для 1.0" HDDs Compact Flash) Адаптер PC PATA-SATA Адаптер PC-SEAGATE Адаптер PC-SEAG.SATA Адаптер PC-PATA-SATA mini Адаптер PC-TOSHIBA Переходник PC-QUANTUM Переходник PC-MX-SAFE Щуп ATMR, HTS548, HTS726 Щуп AVV2, VLAT Интерфейсныекабели IDE 80 pin (80 см.) Интерфейсный кабель IDE 80 pin (34 см.) Кабели питания HDD Кабель питания PC-MX-SAFE Кабель USB Кабель HDD-10 pin (30 см.) Руководство пользователя Комплект оборудования PC-3000 forWindows (UDMA) На рисунках представлены отдельные элементы комплекта оборудования PC-3000 forWindows (UDMA). Рис. Адаптер PC-USB-TERMINAL Рис. Адаптеры PC-QUANTUM, PC-SEAGATE, PC-SEAG.SATA Рис. Адаптер PC-2" - предназначен для подключения 2.5" и 1.8" HDD Рис. Адаптер PC-CF - предназначен для подключения 1.0" HDD (CompactFlash) Рис. Адаптер PC PATA-SATA - предназначен для подключения SATA HDD Рис. Адаптер PC PATA-SATA mini - предназначен для прямого подключения к порту 2 платы "PC-3000 UDMA" Рис. Переходник PC-TOSHIBA - предназначен для подключения HDD Toshiba 1,8" (Micro ATA 3.3 V) Рис. Схема подключения адаптера PC-USB-TERMINAL Рис. Схема подключения адаптера PC-SEAG.SATA Рис. Переходник PC-MX-SAFE - предназначен для работы с накопителями MAXTOR в safemode Рис. Щупы Unlock - 2,3 - предназначены для разблокировки HITACHI/IBM HDD Программное обеспечение PC-3000 forWindows (UDMA) Программное обеспечение комплекса PC-3000 forWindows (UDMA) построено с использованием технологии MDI. Это позволяет работать с 2-мя портами платы PC-3000 UDMA одновременно и независимо друг от друга в одном приложении. Кроме того, в состав ПОкомплекса входят специализированные окна: выбора утилиты, ATA commander, скрипт система, управления базой данных. Использование технологии MDI позволяет размещать на рабочем столе все окна одновременно в рамках одного приложения PC-3000 forWindows (UDMA). В состав ПОкомплекса PC-3000 forWindows (UDMA) входят как универсальные утилиты, так и специализированные. С помощью универсальных утилит Вы сможете достаточно быстро произвести диагностику любого неисправного HDD и определить дальнейшие пути ремонта HDD. Непосредственно же ремонт HDD осуществляется при помощи специализированных утилит, которые индивидуальны для каждого семейства HDD. Все специализированные утилиты позволяют выполнить следующие действия: тестировать HDD в технологическом режиме; тестировать и восстанавливать служебную информацию HDD; читать и записывать содержимое Flash ПЗУ HDD; загружать программу доступа к служебной информации LRD; просматривать таблицы скрытых дефектов P-лист, G-лист, T-лист; скрывать найденные дефекты на поверхностях магнитных дисков; пересчитывать транслятор; изменять конфигурационные параметры. Для простоты работы в комплексе PC-3000 forWindows (UDMA) реализована новая база данных ресурсов (образы Flash ROM, служебные модули, треки служебной зоны). Она позволяет систематизировать все ресурсы HDD и хранить их в сжатом виде. Основные отличия новой базы данных комплекса PC-30000 forWindows (UDMA) следущие: новый сервер базы данных, использующий FireBirddatabaseserver (один из самых надежных SQL серверов); новый механизм индексации хранящихся в базе данных ресурсов для ускорения процесса поиска; возможность создания разделяемой базы ресурсов, используемой несколькими комплексами PC-3000 forWindows (UDMA) одновременно; возможность управления политикой бэкапирования данных; возможность создания базы данных объемом более 4 Гб. Хочется отметить еще одну уникальную возможность - самостоятельное добавление пользователем новых ресурсов от новейших моделей HDD и осуществление их поиска в базе PC-3000. Специализированные режимы для опытных пользователей Специально для опытных пользователей, самостоятельно изучающих HDD, в состав программного обеспечения комплекса PC-3000 forWindows (UDMA) входят специализированные режимы: встроенная скрипт система и ATA commander. Скрипт система - позволяющая самостоятельно силами пользователя реализовать на встроенном языке программирования VisualBasicScript алгоритмы подачи команд в HDD, включая подготовку данных и интерпретацию результатов. Для доступа к HDD предоставляется развитая объектная модель, которая используется утилитами комплекса. В качестве "теста пользователя" реализованный алгоритм может быть подключен к любой утилите комплекса PC-3000 forWindows (UDMA). ATA commander - интерактивный режим, позволяющий пользователю без навыков программирования подавать команды в HDD, включая технологические. ATA commander позволяет установить значение регистров HDD (включая регистры режима LBA 48), подготовить и отобразить данные команд HDD с помощью редактора двоичных данных. Последовательность подаваемых команд в HDD может быть классифицирована по типам и сохранена в файл для дальнейшего использования или отправлена другому пользователю комплекса. На основании данных команды HDD, ATA commander может сгенерировать текст скрипта для использования из Script системы или в качестве "теста пользователя".
6. Видеоадаптер Видеоподсистема любого компьютера состоит из двух частей - видеоадаптера, вставляемого в разъем расширения на системной плате и дисплея, подключаемого к видеоадаптеру. Видеоадаптер может быть оформлен в виде отдельной платы, вставляемой в слот расширения компьютера, или может быть расположен непосредственно на системной плате компьютера. Видеоадаптер включает в себя видеопамять, в которой хранится изображение, отображаемое в данный момент на экране дисплея, постоянное запоминающее устройство, в котором записаны наборы шрифтов, отображаемые видеоадаптером в текстовых и графических режимах, а также функции BIOS для работы с видеоадаптером. Кроме того, видеоадаптер содержит сложное управляющее устройство, обеспечивающее обмен данными с компьютером, формирование изображения и некоторые другие действия. Видеоадаптеры могут работать в различных текстовых и графических режимах, различающихся разрешением, количеством отображаемых цветов и некоторыми другими характеристиками. Сам видеоадаптер не отображает данные. Для этого к видеоадаптеру необходимо подключить дисплей. Изображение, создаваемое компьютером, формируется видеоадаптером и передается на дисплей для предоставления ее конечному пользователю. Видеоадаптер предназначен для хранения видеоинформации и ее отображения на экране монитора. Он непосредственно управляет монитором, а также процессом вывода информации на экран с помощью изменения сигналов строчной и кадровой развертки ЭЛТ монитора, яркости элементов изображения и параметров смешения цветов. Основными узлами современного видеоадаптера являются собственно видеоконтроллер (как правило, заказная БИС — ASIC), видео BIOS, видеопамять, специальный цифроаналоговый преобразователь RAMDAC (RandomAccessMemoryDigitaltoAnalogConverter), кварцевый генератор (один или несколько) и микросхемы интерфейса с системной шиной (ISA, VLB, PCI, AGP или другой). Важным элементом видеоподсистемы является собственная память. Для этой цели используется память видеоадаптера, которая часто также называется видеопамятью, или фрейм-буфером, или же часть оперативной памяти ПК (в архитектуре с разделяемой памятью UMA). Все современные видеоподсистемы могут работать в одном из двух основных видеорежимов: текстовом или графическом. В текстовом режиме экран монитора разбивается на отдельные символьные позиции, в каждой из которых одновременно может выводиться только один символ. Для преобразования кодов символов, хранимых в видеопамяти адаптера, в точечные изображения на экране служит так называемый знакогенератор, который обычно представляет собой ПЗУ, где хранятся изображения символов, «разложенные» по строкам. При получении кода символа знакогенератор формирует на своем выходе соответствующий двоичный код, который затем преобразуется в видеосигнал. Текстовый режим в современных операционных системах используется только на этапе начальной загрузки. Видеопамять. Тут два вопроса: сколько, и какого типа? Что касается объема, то это – не менее двух мегабайт. Причем объем требуемой памяти напрямую связан с разрешением, с которым планируется работать, и глубиной представления цвета. Разрешение. Количество пикселей, представленное битами в видеопамяти, или адресуемое разрешение. Видеопамять может организовываться соотношением пикселов (битов) по оси x (пикселы на строке) к числу пикселов по оси y (столбцы) и к размеру отводимой памяти на представление глубины цвета. Стандартная видеопамять VGA 640 пикселов на 480 пикселов и, обычно, с глубиной представления цвета 8 бит. Чем выше разрешение, тем более детально изображение, и тем больше нужно хранить о нем информации. Но не вся хранимая информация может быть отображена на дисплее. Пиксель. Комбинированный термин, обозначающий элемент изображения, который является наименьшим элементом экрана монитора. Другое название - pel. Изображение на экране состоит из сотен тысяч пикселей, объединенных для формирования изображения. Пиксель является минимальным сегментом растровой строки, которая дискретно управляется системой, образующей изображение. С другой стороны, это координата, используемая для определения горизонтальной пространственной позиции пикселя в пределах изображения. Пиксели на мониторе - это светящиеся точки яркого фосфора, являющиеся минимальным элементом цифрового изображения. Размер пикселя не может быть меньше точки, которую монитор может образовать. На цветном мониторе точки состоят из групп триад. Триады формируются тремя различными фосфорами: красным, зеленым и синим. Фосфоры располагаются вдоль сторон друг друга. Пиксели могут отличаться размерами и формой, в зависимости от монитора и графического режима. Количество точек на экране определяются физическим соотношением ширины к высоте трубки. И вот почему:
Что касается типа видеопамяти, то рекомендуется использовать видеоадаптеры с SGRAM, VRAM, WRAM или MDRAM..
|