Студопедия — Процессор
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процессор






История создания микропроцессора.

Вернемся к истории. Так случилось, что отдельные транзисторы и интегральные схемы были вытеснены с рынка новым устройством — микропроцессором. Это и было началом новой компьютерной эры, которая длится вот уже без малого четыре десятилетия. Отсчет нового летоисчисления компьютерной эры ведут с 1971 г., когда командой во главе с талантливым изобретателем, доктором ТэдомХоффом был создан первый микропроцессор Intel 4004. Сегодня имя Хоффа стоит в ряду с именами величайших изобретателей всех времен и народов, но вряд ли мудрый доктор знал в то время, во что выльется созданный им «компьютер на одном кристалле». Изначально процессор 4004 предназначался для... микрокалькуляторов и был изготовлен по заказу одной японской фирмы. К счастью для всех нас, фирма эта обанкротилась, так и не дождавшись обещанного микропроцессора, — и в результате разработка перешла в собственность не ожидавшей такого счастья Intel. С этого момента и началась эпоха персональных компьютеров, «звездный час» которых настал в начале 80-х. Именно тогда фирмой 1ВМ был выпущен уже ставший легендарным компьютер 1ВМ PC на основе нового микропроцессора все той же фирмы Intel...

Поразительно — но за эти годы старому доброму процессору так и не нашлось достойного преемника! Хотя сегодняшние процессоры от Intel быстреесвоего прародителя более чем в десять тысяч раз, а любой домашний компьютеробладает мощностью и «сообразительностью» во много раз большей, чем компьютер, управлявший полетом космического корабля «Аполлон» к Луне,процессор остается процессором.Факт, который автор не постеснялся привести строкой выше, уже давностал штампом, обязательным в любойрекламе фирмы Intel. Хотя и не сталот этого менее правдивым и красноречивым.

 

Структура микропроцессора.

Процессор — основная микросхема компьютера, в которой и производятся все вычисления. Собственно говоря, процессор в компьютере не один — их может быть целый десяток! Собственным процессором снабжена видеоплата, звуковая плата, множество внешних устройств (например, принтер). И часто по производительности эти микросхемы могут поспорить с главным, Центральным Процессором. Но в отличие от него, все они являются узкими специалистами — один отвечает за обработку звука, другой — за создание трехмерного изображения.

Основное и главное отличие центрального процессора — это его универсальность. При желании (и, разумеется, при наличии необходимой мощности и соответствующего программного обеспечения) центральный процессор может взять на себя любую работу, в то время как процессор видеоплаты при всем желании не сможет раскодировать, скажем, музыкальный файл...

Любой процессор — это выращенный по специальной технологии кристалл кремния (не зря на жаргоне процессор именуется «камнем»). Однако камешек этот содержит в себе множество отдельных элементов — транзисторов, соединенных металлическими мостиками-контактами. Именно они и наделяют компьютер способностью «думать». Точнее, вычислять, производя определенные математические операции с числами, в которые преобразуется любая поступающая в компьютер информация.

Безусловно, один транзистор никаких особых вычислений произвести не может. Единственное, на что способен этот электронный переключатель — это пропустить сигнал дальше или задержать его, в зависимости от подаваемого на его «затвор» напряжения. Наличие сигнала дает логическую единицу (да); его отсутствие — логический же ноль (нет).

Однако процессор — это не просто скопище транзисторов, а целая система множества важных устройств. В состав микропроцессора входят следующие устройства.

Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

· формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

· формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

· получает от генератора тактовых импульсов обратную последовательность импульсов.

Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах.

Кэш-память. Буферная память — своеобразный накопитель для данных. В современных процессорах используется два типа кэш-памяти: первого уровня — небольшая (несколько десятков килобайт) сверхбыстрая память, и второго уровня — чуть помедленнее, зато больше — от 128 килобайт до 2 Мб.

Процессор связан несколькими группами проводников называемых шинами. С остальными устройствами компьютера, и в первую очередь с оперативной памятью. Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина. Шина или часть шины, предназначенная для передачи адреса, а именно используется ЦП для выбора требуемой ячейки памяти или устройства ввода-вывода путем установки на шине конкретного адреса, соответствующего одной из ячеек памяти или одного из элементов ввода-вывода, входящих в систему.

Шина команд. По ней передаются управляющие сигналы, предназначенные памяти и устройствам ввода-вывода. Эти сигналы указывают направление передачи данных (в процессор или из него).

Шина данных — информационная магистраль, благодаря которой процессор может обмениваться данными с другими устройствами компьютера.

Трудно поверить, что все эти устройства размешаются на кристалле площадью не более 4—6 квадратных сантиметров! Только под микроскопом мы можем разглядеть крохотные элементы, из которых состоит микропроцессор, соединяющие их металлические «дорожки» (для их изготовления сегодня используется алюминий, однако уже приходит медь).

Характеристики микропроцессоров.

К основным характеристикам микропроцессора можно отнести такие показатели как тактовую частоту, разрядность процессора, размер кэш-памяти, тип ядра, форм-фактор и т.д. Рассмотрим вышесказанное более подробно.

Тактовая частота. Самый важный показатель, определяющий скорость работы процессора. Тактовая частота, измеряемая в мегагерцах (МГц) и гигагерцах (ГГц), обозначает лишь то количество циклов, которые совершает работающий процессор за единицу времени (секунду). Пик спроса сегодня приходится на процессоры с частотой от 3 до 4 ГГц. Кстати, согласно так называемому «закону Мура», названного в честь одного из изобретателей микропроцессора и нынешнего руководителя корпорации Intel, каждые полтора года частота микропроцессоров увеличивается не менее чем в два раза.

Разрядность процессора. Если тактовую частоту процессора можно уподобить скорости течения воды в реке, то разрядность процессора — ширине ее русла. Понятно, что процессор со вдвое большей разрядностью может «заглотнуть» вдвое больше данных в единицу времени — в том случае, конечно, если это позволяет сделать специально оптимизированное программное обеспечение. Сегодня подавляющее большинство «домашних» процессоров — 32-разрядные (32-битные). И это, к сожалению, явный анахронизм: большинство из входящих в состав компьютера устройств, в том числе и шина, обладают разрядностью 64 и 128 бит [6, с.42]!

Размер кэш-памяти. В эту встроенную память (не путать с памятью оперативной — та поставляется в виде отдельных модулей) процессор помещает все часто используемые данные, чтобы не «ходить» каждый раз «за семь верст киселя хлебать» — к более медленной оперативной памяти и жесткому диску. Кэш-память в процессоре имеется двух видов. Самая быстрая — кэш-память первого уровня (16—32 кб у процессоров Intel и до 128 кб — в последних моделях AMD).

Существует еще чуть менее быстрая, но зато более объемная кэш-память второго уровня — и именно ее объемом отличаются различные модификации процессоров. Так, в семействе Intel самый «богатый» кэш-памятью — мощный ExtremeEdition (2 Мб). У новых моделей Pentium 4 Prescott и у Athlon 64 размер кэша второго уровня составляет 1 Мб [6, с.42].

Тип ядра. Переход на новую технологию, как правило, влечет за собой и смену процессорного «ядра» — и частенько получается так, что на одном и том же прилавке мирно уживаются процессоры от одного производителя, с одинаковой актовой частотой, принадлежащие к одному поколению, но с разными ядрами. Например, среди процессоров Pentium 4 есть старые модели, произведенные по 0,13 микронной технологии (Northwood) и новая модификация Prescott(0,09 микрон). В настоящее время большинство процессоров производится по 0,09-микронной технологии — а это значит, что размер самых маленьких их элементов в 500 раз меньше толщины человеческого волоса!

Насколько же еще можно уменьшить размер транзисторов? Оптимисты (а в их числе не кто иной, как знаменитый Гордон Мур, автор «закона Мура» и один из изобретателей процессора) считают, что технологический предел лежит где-то в районе 0,03 микрона. Тот же Мур предсказывает, что достигнут этот предел удет не раньше 2010 г., — а это значит, что впереди у нас еще целая пятилетка.

Форм-фактор. Часто смена типа ядра и архитектуры процессора влечет за собой изменения в его внешности — форм-факторе, т. е. типе корпуса, в который упакован процессор. Например, новые процессоры Pentium 4 Prescott выпускаются в форм-факторе LGA775 (SocketT), а старые модели рассчитаны на разъем Socket 478. А это значит, что старую модификацию Pentium 4 вы уже не сможете установить на новую системную плату — и наоборот.

Частота шины. Шина — это своеобразная информационная магистраль, связывающая воедино все устройства, подключенные к системной плате — процессор, перативную память, видеоплату... Понятно, что у этой «магистрали», как и у процессора, есть своя пропускная способность — ее-то и характеризует уже знакомая нам частота. Чем выше этот показатель — тем лучше.

К примеру, еще в начале 2004 г. большинство процессоров Intel работало на частоте шины 800 МГц, однако к летнему сезону корпорация поднатужилась и взяла фантастическую по прежним временам планку в 1066 МГц! При этом в продаже до сих пор имеются процессоры обоих типов, равно как и предназначенные для них системные платы.

Частота системной шины прямо связана и с частотой самого процессора через так называемый «коэффициент умножения». Процессорная частота — это и есть частота системной шины, умноженная процессором на некую заложенную в нем величину. Например, частота процессора 2,4 ГГц — это частота системной шины в 200 МГц, умноженная на коэффициент 12.

Классификация микропроцессоров.

В современном мире трудно найти область техники, где не применялись бы микропроцессоры. Они применяются при вычислениях, они выполняют функции управления, они используются при обработке звука и изображения. В зависимости от области применения микропроцессора меняются требования к нему. Это накладывает отпечаток на внутреннюю структуру микропроцессора. По области применения определилось три направления развития микропроцессоров:

· микроконтроллеры

· универсальные микропроцессоры

· сигнальные микропроцессоры

По внутренней структуре существует два основных принципа построения микропроцессоров:

· Гарвардская архитектура

· Архитектура Фон-Неймана

По системе команд микропроцессоры отличаются огромным разнообразием, зависящим от фирмы-производителя. Тем не менее можно определить две крайние политики построения микропроцессоров:

· Аккумуляторные микропроцессоры

· Микропроцессоры с регистрами общего назначения

В микропроцессорах с регистрами общего назначения математические операции могут выполняться над любой ячейкой памяти. В зависимости от типа операции команда может быть одноадресной, двухадресной или трёхадресной.

Принципиальным отличием аккумуляторных процессоров является то, что математические операции могут производиться только над одной особой ячейкой памяти - аккумулятором. Для того, чтобы произвести операцию над произвольной ячейкой памяти её содержимое необходимо скопировать в аккумулятор, произвести требуемую операцию, а затем скопировать полученный результат в произвольную ячейку памяти.

В настоящее время в чистом виде не существует ни та ни другая система команд. Все выпускаемые в настоящее время процессоры обладают системой команд с признаками как аккумуляторных процессоров, так и микропроцессоров с регистрами общего назначения.

В каждом поколении имеются еще модификации, отличающиеся друг от друга назначением и ценой. Например, в славном семействе Pentium 4 числятся три «брата» — старший, Pentium 4 ExtremeEdition, работает на мощных серверах серьезных учреждений. Средний братец, собственно Pentium 4, трудится на производительных настольных компьютерах, ну а симпатяга-демократ CeleronD верно служит простому люду на домашних компьютерах.

«Народные» процессоры Celeron отличаются от «больших» Pentium 4 частотой системной шины (533 МГц против 800) и объемом кэш-памяти (256 кб против 1 Мб). Поэтому, хотя тактовая частота у различных модификаций может быть одинакова (например, 3,2 ГГц), реальная производительность Celeron будет значительно ниже — от нескольких десятков процентов до не- скольких раз(!). Особенно сильно падение производительности заметно при работе с мультимедийными приложениями и трехмерной графикой, а вот на большинстве офисных программ замена Pentium 4 на Celeron практически не сказывается.

Семейство. Когда на процессорном рынке подвизался лишь один крупный игрок — корпорация Intel, — вопрос о выборе платформы, как вы сами понимаете, не стоял. Однако такая райская жизнь для королевы процессор строения продолжалась недолго: уже через несколько лет на горизонте замаячили конкуренты. Первоначально компании-«сателлиты» (в первую очередь AMD и Cyrix) лишь подбирали крохи со стола «королевы», штампуя «клоны» ее не самых ходовых моделей. Но время шло, компании мужали, набирались опыта и нахальства... И к началу 90-х гг. конкурентная борьба между ними разгорелась не на жизнь, а на смерть. Некоторые компании пали смертью храбрых, так и не дождавшись от фортуны билета в счастливое завтра. Но один из конкурентов Intel — компания AMD, не просто выжила и укрепилась, но и начала активно перетягивать одеяло на себя. Если в 1999 г. доля AMD на процессорном рынке не превышала 20 %, то сегодня ее процессорами оснащено уже почти 40 % компьютеров!

Разумеется, что в жесткой конкурентной борьбе каждая компания стремилась снабдить собственные процессоры какими-то особенными «изюминками» — как следствие, процессоры обоих компаний постепенно становились несовместимыми. Нет, бесспорно, процессоры и Intel, и AMD соответствуют стандартам «IBM РС-совместимости», оба они поддерживают одни и те же программы... Но вот «железа» каждый из них требует разного. Как минимум, материнская плата, и иногда — и память «заточены» под конкретный тип процессора. И установить процессор от AMD на плату для Pentium 4 вам, увы, не удастся... Но можно сказать, что на рынке установилось своеобразное равновесие — и какую бы платформу вы ни выбрали, в явном проигрыше вы не останетесь.

Поколения процессоров отличаются друг от друга скоростью работы, архитектурой, исполнением и внешним видом... словом, буквально всем. Причем отличаются не только количественно, но и качественно. Так, при переходе от Pentium к Pentium II и затем — к Pentium III была значительно расширена система команд (инструкций) процессора.

Если брать за точку отсчета изделия «королевы» процессорного рынка, корпорации 1п1е1, то за всю 27-летнюю историю процессоров этой фирмы сменилось восемь их поколений: 8088, 286, 386, 486, Pentium, Pentium II, Pentium III, Pentium 4.

В пределах одного поколения все ясно: чем больше тактовая частота, тем быстрее процессор. А как же быть, если на рынке имеются два процессора разных поколений, но с одинаковой тактовой частотой? Например, Pentium III и Pentium 4... Конечно, второй процессор поколения будет работать быстрее — на 10—15 %, в зависимости от задачи. Связано это с тем, что в новых процессорах часто бывают встроены новые системы команд-инструкций, оптимизирующих обработку некоторых видов информации.

 

 

3. Система охлаждения.

Негативное влияние нагрева и меры по его устранению

 

Нагрев кристалла интегральной схемы (ИС) в процессе ее функционирования - факт совершенно очевидный и неизбежный. Протекание тока в проводнике (полупроводнике) обязательно сопровождается выделением в нем тепловой мощности, и поскольку сам проводник (полупроводник) имеет вполне конечную теплопроводность, его температура оказывается выше температуры окружающей среды. Корпус микросхемы и различные внутренние защитные/изолирующие слои, которые, как правило, обладают меньшей теплопроводностью, чем проводниковые или полупроводниковые материалы, еще более усугубляют ситуацию, затрудняя теплоотвод от кристалла ИС и существенно увеличивая его температуру.

В принципе, очень высокие (или наоборот, экстремально низкие) температуры были бы совсем не страшны, если бы не четкая зависимость правильного и надежного функционирования транзисторов ИС и структуры их соединений от температурных условий. В результате рабочий температурный диапазон для "среднестатистической" ИС получается довольно узким - как правило, от -40 до 125°C. Ограничение снизу является следствием различия коэффициентов теплового расширения кремниевой подложки, изолирующих/защитных слоев, слоев металлизации и т.п. (при низких температурах возникают внутренние механические напряжения - термомеханический стресс, что оказывает влияние на электрофизические свойства ИС и может привести даже к физическому разрушению кристалла). Ограничение сверху обусловлено ухудшением частотных и электрических свойств транзисторов (уменьшение тока, понижение порогового напряжения и т.п.), а также возможностью возникновения необратимых пробойных явлений в обратносмещенных p-n-переходах. Для современных процессоров (в частности, Athlon XP и Pentium 4), отличающихся гораздо более тонкой микроструктурой и более комплексными корпусами, чем "среднестатистическая" КМОП ИС, диапазон рабочих температур оказывается еще строже - обычно от 0 до 100°C. Что ж, если процессор может более или менее нормально функционировать при температуре 100°C, то к чему тогда все эти мониторинги и термоконтроли, ведь его температура редко дотягивает до 90-95°C даже с очень слабой системой охлаждения?! На самом деле, нормальная работоспособность при высоких температурах весьма иллюзорна, поскольку в глубинах процессора имеют место не только чисто электрические явления, но и огромное количество электрохимических процессов и реакций, которые являются по своей сути термоактивационными (их скорость исключительно сильно зависит от температуры). С течением времени они принципиально могут не только затруднить корректное функционирование процессора, но и даже привести к его полному отказу, хотя рабочие температуры при этом могут находиться во вполне безопасных пределах, если смотреть с чисто электрической точки зрения. Нельзя сказать, что поголовно все эти явления оказывают пагубное воздействие на жизнедеятельность процессора - наоборот, некоторые из них могут даже улучшить электрические и частотные свойства транзисторов. Но все-таки большая часть термоактивационных процессов им на пользу явно не идет.

Наиболее "влиятельны" по своему вредоносному воздействию две группы таких процессов. Первая - электрохимическое разрушение металлизации (электромиграция). Под воздействием электрического поля и повышенной температуры атомы металла срываются со своих насиженных мест и мигрируют в прилегающие области. С течением времени толщина проводника может значительно уменьшиться (с резким увеличением активного сопротивления на этом участке), так что даже при относительно малом токе в условиях локального перегрева вполне вероятен обрыв (выгорание) участка дорожки и последующий за ним выход из строя группы транзисторов, функционального узла и всей ИС в целом. Несмотря на то, что 0.18-ти микрометровая технология производства процессоров Pentium 4 и Athlon XP закладывает достаточно неплохой иммунитет к электромиграции и делает этот процесс практически равновесным, обеспечивая благоприятные условия для обратной диффузии, уже при температурах 75-85°C и выше равновесие нарушается со всеми вытекающими отсюда последствиями. Вторая группа явлений - деградация окисла. Технологически невозможно обеспечить идеальную чистоту пленки двуокиси кремния, используемой в качестве диэлектрика под затвором транзисторов. В ней всегда присутствуют примеси (обычно донорного типа), которые сосредотачиваются вблизи внутренней поверхности пленки (на границе раздела между диэлектриком и кремнием). Ионы примесей способствуют образованию побочных инверсных или обогащенных слоев (паразитных каналов) у поверхности полупроводника под диэлектриком, которые оказывают влияние на обратный ток p-n-переходов и величину пробивного напряжения. Под воздействием поля (в 0.18 мкм транзисторах напряженность поля достигает 106 В/см) и градиентов температуры происходит дрейф и диффузия ионов в диэлектрике, что приводит к изменению свойств самого диэлектрика и существенным изменениям электропроводности и протяженности паразитных каналов в полупроводнике (следовательно - к нарушению нормального функционирования транзистора за счет значительных флуктуаций тока), а в самом "запущенном" случае - к пробою диэлектрика или p-n-перехода стока даже при относительно низких температурах. Ситуация еще более усугубляется из-за немалого количества дополнительных ионов, которые мигрируют в окисел из других областей транзистора (высоколегированные исток и сток, омические контакты, поликремневый затвор), причем, опять же, это происходит под воздействием высокой температуры

 

 

4. Оперативное запоминающее устройство (ОЗУ или RAM)

ОЗУ - быстрая, полупроводниковая, энергозависимая память. ОЗУ имеет сравнительно небольшой объем - обычно от 64 до 512 Мбайт, тем не менее, центральный процессор имеет оперативный (быстрый) доступ к данным, записанным в ОЗУ (на извлечение данных из ОЗУ требуется не более нескольких наносекунд). В ОЗУ хранятся исполняемая в данный момент программа и данные, с которыми она непосредственно работает. Это значит, что когда мы запускаем какую-либо компьютерную программу, находящуюся на диске, она копируется в оперативную память, после чего процессор начинает выполнять команды, изложенные в этой программе. Часть ОЗУ, называемая "видеопамять", содержит данные, соответствующие текущему изображению на экране. ОЗУ - это память, используемая как для чтения, так и для записи информации. При отключении электропитания информация в ОЗУ исчезает, что объясняется энергозависимостью.

От количества установленной в компьютере оперативной памяти напрямую зависит возможность, с какими программами вы сможете на нем работать. При недостаточном количестве оперативной памяти многие программы вовсе не будут работать, либо станут работать очень медленно.

Часто для оперативной памяти используют обозначение RAM (Random Access Memory), то есть память с произвольным доступом.

Полупроводниковая оперативная память в настоящее время делится на статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM) (рис.1). [1]

Рис. Классификация ОЗУ

Динамическая оперативная память (Dynamic RAM – DRAM) используется в большинстве систем оперативной памяти ПК. Основное преимущество этого типа памяти состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большей емкости.

Ячейки памяти в микросхеме DRAM – это крошечные конденсаторы, которые удерживают заряды. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать”, и данные будут потеряны.

Важнейшей характеристикой DRAM является быстродействие, а проще говоря, продолжительность цикла + время задержки + время доступа, где продолжительность цикла – время, затраченное на передачу данных, время задержки – начальная установка адреса строки и столбца, а время доступа – время поиска самой ячейки. Измеряется в наносекундах.

Существует тип памяти, совершенно отличный от других - статическая оперативная память (Static RAM – SRAM). Она названа так потому, что, в отличие от динамической оперативной памяти, для сохранения ее содержимого не требуется периодической регенерации. Но это не единственное ее преимущество. SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.

Микросхемы SRAM не используются для всей системной памяти потому, что по сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высокая. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше.

Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности ПК. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти.

В переводе слово «cache» (кэш) означает «тайный склад», «тайник». Тайна этого склада заключается в его «прозрачности» — адресуемой облас­ти памяти для программы он не добавляет. Кэш является дополнительным быс­тродействующим хранилищем копий блоков информации из основной памяти, вероятность обращения к которым в ближайшее время велика. Кэш не может хранить копию всей основной памяти, поскольку его объем во много раз меньше объема основной памяти. Он хранит лишь ограниченное количество блоков дан­ных и каталог — список их текущего соответствия областям основной памяти. Кроме того, кэшироваться может и не вся оперативная память, доступная процессору: во-первых, из-за технических ограничений может быть ограничен максимальный объем кэшируемой памяти; во-вторых, некото­рые области памяти могут быть объявлены некэшируемыми (настройкой регис­тров чипсета или процессора). Если установлено оперативной памяти больше, чем, возможно, кэшировать, обращение к некэшируемой области ОЗУ будет мед­ленным. Таким образом, увеличение объема ОЗУ, теоретически всегда благотвор­но влияющее на производительность, может снизить скорость работы опреде­ленных компонентов, попавших в некэшируемую память.

Основная память состоит из регистров. Регистр - это устройство для временного запоминания информации в оцифрованной (двоичной) форме. Запоминающим элементом в регистре является триггер - устройство, которое может находиться в одном из двух состояний, одно из которых соответствует запоминанию двоичного нуля, другое - запоминанию двоичной единицы. Триггер представляет собой крошечный конденсатор-батарейку, которую можно заряжать множество раз. Если такой конденсатор заряжен - он как бы запомнил значение "1", если заряд отсутствует - значение "0". Регистр содержит несколько связанных друг с другом триггеров. Число триггеров в регистре называется разрядностью компьютера. Производительность компьютера напрямую связана с разрядностью, которая бывает равной 8, 16, 32, 64, 128.[2]

 







Дата добавления: 2015-09-06; просмотров: 920. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия