Ионообменная, ионная, ион-парная хроматография.
В основе методов ионообменной, ионной и ион-парной хроматографии лежит динамический процесс замещения ионов, связанных с неподвижной фазой, ионами элюента, поступающими в колонку. Основная цель хроматографического процесса — разделение неорганических или органических ионов одного и того же знака. Удерживание в этих видах хроматографии определяется изменением свободной энергии реакции ионного обмена. Соотношение концентраций обменивающихся ионов в растворе и в фазе сорбента характеризуется ионообменньим равновесием. Ионный обмен заключается в том, что некоторые вещества (ион-обменники) при погружении в раствор электролита поглощают из него катионы или анионы, выделяя в раствор эквивалентное количество других ионов с зарядом того же знака. Между катионообменником и раствором происходит обмен катионами, между анионообменником и раствором — обмен анионами. Катионообменники представляют собой чаще всего специально синтезированные нерастворимые полимерные вещества, содержащие в своей структуре ионогенные группы кислотного характера: —S03Н; -СООН; —ОH; -Р03Н2 -Аs3Н2. Известны амфотерные ионообменники, содержащие в своей структуре и кислотные, и основные группы. Ионообменники, имеющие в своем составе однотипные (например, —S03Н) кислотные (основные) группы, называют ионообменники, содержащие разнотипные (например, —S03Н, —0H) кислотньие (основные) группы — полифункциональными Монофункциональные ионообменники получают реакцией полимеризации. Реакция поликонденсации позволяет получать полифункциональные ионообменники для того чтобы полученные ионообменники имели достаточно высокие эксплуатационные характеристики, они должны быть нерастворимыми, но набухающими в соответствующем растворителе и иметь достаточно большое количество ионогенных групп, способных к обмену с ионогенными группами анализируемой пробы, Это может быть достигнуто, если полученные полимерные цепи достаточно разветвлены и связаны друг с другом «сшивающими мостиками>), Например, при получении катионообменников полимеризационного типа на основе стирола в качестве сшивающего агента чаще всего используется дивинилбензол, введение которого в количестве до 16% обеспечивает получение ионообменников с различной степенью набухания и, следовательно, позволяет регулировать пористость ионообменника. Степенью набухания ионита, выражаемой в миллилитрах на грамм, называют объем упакованного в колонку 1 г воздушно-сухого ионообменника. Содержание в ионообменнике ионогенных групп, способных к обмену с ионогенными группами анализируемой пробы, определяет так называемую обменную емкость ионита. Обменную емкость ионита выражают в миллиэквивалентах или миллимолях обмениваемьих ионов на 1 г сухого или 1 мл набухшего ионообменника. Ионообменник поглощает, как правило, один из противоионов — ионов, находящихся в подвижной фазе, т. е. проявляет определенную селективность. Экспериментально установлены ряды сродства, или селективности, ионов по отношению к ионообменникам разных типов. Например, при низких концентрациях раствора на сильнокислотных катионообменниках ионы с одинаковым зарядом сорбируются в такой последовательности: Для ИОНОВ с разными зарядами сорбируемость повышается с увеличением заряда: Однако изменение условий проведения реакции ионного обмена может привести к обращению ряда. Ряды сродства установлены и для анионообменников. Например, сорбируемость анионов на сильноосновных анионитах увеличивается в ряду: Ионообменники, содержащие в своей структуре сильнокислотные или сильноосновные группы, вступают в реакции ионного обмена с любыми нонами, находящимися в растворе и обладающими зарядами того же знака, что и знак противоиона. Такие ионообменники называют универсальными. Процесс ионного обмена между анализируемьтм веществом и иснообменником может быть осуществлен одним из трех способов: статическим, динамическим (способ ионообменного фильтра) и хроматографическим. Статический метод ионного обмена заключается в том, что навеску ионита приводят в контакт с определенным объемом раствора и перемешивают или встряхивают определенное время до установления равновесия. Это быстрый и простой способ ионного обмена, применяющийся для концентрирования ионов из разбавленных растворов, удаления ненужных примесей, но он не обеспечивает полного поглощения ионов, так как ионный обмен — это не- равновесный процесс, и вследствие этого не гарантирует полного разделения ионов. При проведении ионного обмена динамическим способом через колонну с ионитом пропускают раствор, который по мере перемещения по колонке контактирует с новыми гранулами ионита. Этот процесс обеспечивает более полный обмен, чем статический метод, так как продукты обмена удаляются потоком раствора. Им можно концентрировать ноны из разбавленных растворов и разделять ионы, сильно различающиеся по свойствам, например разнозарядные ноны (отделять катионы от анионов), но разделение ионов одного знака заряда практически невозможно. Количественное разделение таких ионов возможно только при многократном повторении сорбционно-десорбционных элементарных актов в динамических условиях, т. е. хроматографическим методом. При работе этим методом применяют высокие слои ионита и в этот слой вводят разделяемую смесь в количестве, значительно меньшем емкости колонки, благодаря чему и обеспечивается многократное повторение элементарных актов ионного обмена. По технике проведения анализа ионообменная хроматография сходна с молекулярной и может осуществляться по элюентному (проявительному), фронтальному и вытеснительному вариантам. Отличие между молекулярной и ионообменной хроматографией состоит в том, что в молекулярной хроматографии разделенные компоненты смеси элюируются из колонки чистым элюентом, а в ионообменной в качестве элюента используют раствор электролита. При этом обмениваемый нон элюента должен сорбироваться менее селективно, чем любой из ионов разделяемой смеси. При проведении проявительной ионообменной хроматографии, которая применяется наиболее часто, колонну, заполненную ионитом, сначала промывают раствором электролита до тех пор, пока в ионите не произойдет полное замещение всех его ионов на ионы, содержащиеся в элюенте. Затем в колонку вводят небольшой объем раствора анализируемого вещества, имеющего в своем составе разделяемые ионы в количестве около 1% от емкости ионита. далее колонку промывают раствором элюента, отбирая франции элюата и анализируя их. Смесь ионов можно разделить на высокоосновном анионите (сшитый полистирол, содержащий группы четвертичных аммониевых оснований —N(СН3)3), Для решения практических задач варьируют условия разделения но нов, подбирая подходящую подвижную фазу (состав, концентрация, рН, ионная сила) или изменяя пористость полимерной матрицы ионита, т. е. число межцепных связей в матрице, и создавал ионитовые сита, проницаемые для одних ионов и способные к их обмену и непроницаемые для других. Можно также изменять природу и взаимное расположение ионогенных групп, а также получать сорбенты, способные к селективным химическим реакциям за счет комалексообразования. Высокой селективностью обладают, например, комплексообразующие ионообменники, содержащие в своей структуре хелатообразующие группы органических реагентов диметилглиоксима, дитизона, 8-оксихинолина и др., а также краун-эфиры. Наибольшее применение в ионообменной, ионной и ион-парной хроматографии находят синтетические макро- и микросетчатые органические иснообменники, имеющие большую обменную емкость (3—7 ммоль/г), а также неорганические ионообменные материалы. Микросетчатые ионообменники способны к обмену ионов только в набухшем состоянии, макросетчатые — в набухшем и ненабухгвем состояниях. другим структурным типом ионообменников являются поверхностно-пленочные ионитьи, твердая сердцевина которых изготовлена из непористого сополимера стирола и дивинилбензола, стекла или силикагеля и окружена тонкой пленкой ионообменника. Общий диаметр такой частицы составляет около 40 мкм, толщина пленки ионита — 1 мкм. Недостаток таких ионообменников — сравнительно большой диаметр частиц и малая обменная емкость из-за низкой удельной поверхности, вследствие чего приходится работать с малыми пробами и, соответственно, использовать высокочувствительные Детекторы. Кроме того, такие ионообменники достаточно быстро отравляются и не способны к регенерации. В высокоэффективной ионообменной и ионной хроматографии применяют объемно-пористые полистирольные ионообменники, объемно-пористые кремнеземы с диаметром гранул около 10 мкм, а также практически не набухающие поверхностно-пористые и поверхностно-модифицированные сополимеры стирола и дивинилбензола с ионогенными сульфо- и аминогруппами. В ион-парной хроматографии используют «щеточные» сорбенты — силикагели с привитыми обращенными фазами С2, С8, С18, которые легко превращаются в катионообменник при поглощении из подвижной фазы ионогенных поверхностно-активных веществ, например алкилсульфатов или солей четвертичных аммониевых оснований. При проведении хроматографического разделения с применением ионообменников в качестве подвижной фазы чаще всего используют водные растворы солей. Это связано с тем, что вода обладает прекрасными растворяющими и ионизирующими свойствами, благодаря чему молекулы анализируемой пробы мгновенно диссоциируют на ионы, ионообменные группы ионообменника гидратируются и также переходят в полностью или частично диссоциированную форму. Это обеспечивает быстрый обмен противоионов. На элюирующую силу подвижной фазы основное влияние оказывает рН, ионная сила, природа буферного раствора, содержание органического растворителя или поверхностно-активного вещества (ион-парная хроматография). Значение рН выбирают в зависимости от природы ионогенных групп, разделяемых ионов и матрицы. С сильнокислотными и сильно- основными ионообменниками можно работать при рН = 2—12, со слабокислотными — при рН = 5—12, со слабоосновными — при рН = 2—б. Сорбенты на основе кремнезема при рН≥9 использовать нельзя. Ионная сила подвижной фазы влияет на емкость ионообменника. С увеличением ионной силы сорбция ионов обычно уменьшается, так как растет элюирующая сила подвижной фазы. Поэтому в начале разделения подвижная фаза должна иметь малое значение ионной силы (0,05—0,10), а конечное значение этой характеристики не должно превышать 2. При градиентном элюировании часто используют буферы с увеличивающейся ионной силой. Для селективного элюирования ионов, поглощенных ионообменником, можно применять воду, буферные растворы (фосфатный, ацетатный, боратный, гидрокарбонатный и др.) с определенным значением рН и ионной силы, растворы минеральных (соляная, азотная, серная, фосфорная) и органических (фенол, лимонная, молочная, винная, щавелевая, ЭДТА) кислот. Выбор элюента облегчается тем, что предельные коэффициенты распределения большинства элементов между водными (водно-органическими) растворами многих комплексантов и ионообменниками стандартного типа определены и представлены в таблицах.
|