Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскопанельные мониторы




Мониторы на основе ЭЛТ в настоящее время являются наиболее распространенными, однако они обладают рядом недостатков: значительные масса, габариты и энергопотребление; наличие тепловыделения и излучения, вредного для здоровья человека. В связи с этим на смену ЭЛТ-мониторам приходят плоскопанельные мониторы: жидкокристаллические (ЖК-мониторы), плазменные, электролюминесцентные, мониторы электростатической эмиссии, органические светодиодные мониторы.

ЖК-мониторы (LCD — Liquid Crystal Display} составляют основную долю рынка плоскопанельных мониторов с экраном размером 13—17". Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, затем их стали использовать в мониторах для портативных компьютеров. Сегодня в результате прогресса в этой области начинают получать все большее распространение LCD-мониторы для настольных компьютеров.

Основным элементом ЖК-монитора является ЖК-экран, состоящий из двух панелей, выполненных из стекла, между которыми размещен слой жидкокристаллического вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности. оптических), связанных с упорядоченностью ориентации молекул. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них. Следовательно, формирование изображения в ЖК-мониторах основано на взаимосвязи между изменением электрического напряжения, приложенного к жидкокристаллическому веществу, и изменением ориентации его молекул.

Экран ЖК-монитора представляет собой массив отдельных ячеек (называемых пикселами), оптические свойства которых могут меняться при отображении информации. Рис. 4.4 иллюстрирует принцип действия ячейки ЖК-монитора. Панели ЖК-монитор; имеют несколько слоев, среди которых ключевую роль играют две панели, выполненные из свободного от натрия и очень чистого стеклянного материала, между которыми и расположен тонкий слой жидких кристаллов. На панелях нанесены параллельные бороздки, вдоль которых ориентируются кристаллы. Панели расположены так, что бороздки на подложках перпендикулярны между собой. Технология получения бороздок состоит в нанесении ни стеклянную поверхность тонких пленок из прозрачного пластика Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках.

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). В качестве источников света используются специальные электролюминесцентные лампы с холодным катодом, характеризующиеся низким энергопотреблением. Молекулы одной из разновидностей жидких кристаллов (нематиков) в отсутствие напряжения на подложках поворачивают вектор электрической напряженности электромагнитного поля в световой волне, проходящей через ячейку, на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок позволяет обеспечить одинаковые углы поворота для всех ячеек. Фактически каждая ЖК-ячейка представляет собой электронно управляемый светофильтр, принцип действия которого основан на эффекте поляризации световой волны.

Чтобы поворот плоскости поляризации светового луча был заметен для глаза, на стеклянные панели дополнительно наносят два слоя, представляющих собой поляризационные фильтры. Эти фильтры выполняют функции поляризатора и анализатора.

Принцип действия ячейки ЖК-монитора (см. рис. 4.4) в следующем. При отсутствии напряжения между подложками ячейка ЖК-монитора прозрачна, поскольку вследствие перпендикулярного расположения бороздок на подложках и соответствующего закручивания оптических осей жидких кристаллов вектор поляризации света поворачивается и проходит без изменения через систему поляризатор — анализатор (см. рис. 4.4, а). Ячейки, у которых ориентирующие канавки, обеспечивающие соответствующее закручивание молекул жидкокристаллического вещества, расположены под углом 90°, называются твистированными нематическими. При создании между подложками напряжения 3— 10 В молекулы жидкокристаллического вещества располагаются параллельно силовым линиям поля (см. рис. 4.4, 6). Твистированная структура жидкокристаллического вещества нарушается, и поворота плоскости поляризации проходящего через него света не происходит. В результате плоскость поляризации света не совпадает с плоскостью поляризации анализатора, и ЖК-ячейка оказывается непрозрачной. Напряжение, приложенное к каждой ЖК-ячейке, формируется ПК.

Для вывода цветного изображения на экран выполняется подсветка монитора сзади, так чтобы свет порождался в задней части ЖК-дисплея. Цвет формируется в результате объединения ЖК-ячеек в триады, каждая из которых снабжена светофильтром, пропускающим один из трех основных цветов.

Первые ЖК-мониторы имели диагональ около 8", сегодня они выпускаются с диагональю 19" и более. Увеличение разрешения ЖК-мониторов достигается с помощью специальных технологий.

Технология, при которой закручивание молекул составляет 90°, называется твистированной нематической (7W — Twisted Nematic). Недостатки ЖК-мониторов, реализующих эту технологию, связаны с низким быстродействием; зависимостью качества изображения (яркости, контрастности) от внешних засветок; значительным взаимным влиянием ячеек; ограниченным углом зрения, под которым изображение хорошо видно, а также низкими яркостью и насыщенностью изображения.

Следующим этапом на пути совершенствования ЖК-мониторов было увеличение угла закручивания молекул ЖК-вещества с 90 до 270° с помощью STN-технологии (Super-Twisted Nematic). Использование двух ячеек, одновременно поворачивающих плоскости поляризации в противоположных направлениях, согласно DSTN-технологии (Dual Super-Twisted Nematic), позволило значительно улучшить характеристики ЖК-мониторов.

Для повышения быстродействия ЖК-ячеек используется технология двойного сканирования (DSS — Dual Scan Screens), когда весь ЖК-экран разбивается на четные и нечетные строки, обновление которых выполняется одновременно. Двойное сканирование совместно с использованием более подвижных молекул позволило снизить время реакции ЖК-ячейки с 500 мс (у ЖК-мониторов, реализующих технологию TN) до 150 мс и значительно повысить частоту обновления экрана.

Для получения лучших результатов с точки зрения стабильности, качества, разрешения и яркости изображения используются мониторы с активной матрицей в отличие от применявшихся ранее с пассивной матрицей. Термин пассивная матрица (Passive Matrix) относится к такому конструктивному решению монитора, согласно которому монитор разделен на отдельные ячейки, каждая из которых функционирует независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что рассмотренные выше технологии создания ЖК-мониторов не могут обеспечить быстродействие при отображении информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки. Вследствие большой электрической емкости отдельных ячеек напряжение на них не может изменяться достаточно быстро, поэтому изображение не отображается плавно и дрожит на экране. При этом между соседними электродами возникает некоторое взаимное влияние, которое может проявляться в виде колец на экране.

В активной матрице используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно увеличить быстродействие.

Активная матрица (active matrix) имеет следующие преимущества по сравнению с пассивной матрицей:

š высокая яркость;

š угол обзора, достигающий 120—160°, в то время как у мониторов с пассивной матрицей качественное изображение можно наблюдать только с фронтальной позиции по отношению к экрану;

š высокое быстродействие, обусловленное временем реакции монитора около 50 мс.

Функциональные возможности ЖК-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчной регенерации дисплея, а в результате разряда емкостей элементов изображение исчезает, так 1 как кристаллы возвращаются к своей изначальной конфигурации. 1 В случае с активной матрицей к каждому электроду добавлен за- 1 поминающий транзистор, который может хранить цифровую ин- ( формацию (двоичные значения 0 или 1), и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. ! Такой транзистор, выполняя роль своеобразного коммутирующего ключа, позволяет коммутировать более высокое (до десятков вольт) напряжение, используя сигнал низкого уровня (около 0,7 В). Благодаря применению активных ЖК-ячеек стало возможным значительно снизить уровень сигнала управления и тем самым; решить проблему частичной засветки соседних ячеек.'

Запоминающие транзисторы производятся из прозрачных материалов, что позволяет световому лучу проходить сквозь них, и располагаются на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Поскольку запоминающие транзисторы выполняются по тонкопленочной технологии, подобные ЖК-мониторы получили название TFT-мониторы (Thin Film Transistor— тонкопленочный транзистор). Тонкопленочный транзистор имеет толщину в диапазоне от 0,1 до 0,01 мкм. Технология TFT была разработана специалистами фирмы Toshiba. Она позволила не только значительно улучшить показатели ЖК-мониторов (яркость, контрастность, угол зрения), но и создать на основе активной ЖК-матрицы цветной монитор.

К основным характеристикам жидкокристаллических мониторов относятся следующие.

Размер экрана ЖК-мониторов находится в пределах от 13 до 16". В отличие от ЭЛТ-мониторов, номинальный размер экрана и размер его видимой области (растра) практически совпадают.

Ориентация экрана у ЖК-монитора в отличие от ЭЛТ-монитора может быть как портретная, так и ландшафтная. В то время как традиционные экраны ЭЛТ-мониторов и ЖК-экраны компьютеров типа Notebook имеют только ландшафтную ориентацию, обусловленную тем, что поле зрения человека в горизонтальном направлении шире, чем в вертикальном, в ряде случаев (работа с текстами большого объема, Web-страницами) намного удобнее работать с экраном портретной ориентации. ЖК-монитор можно легко развернуть на 90°, при этом ориентация изображения останется прежней.

Поле обзора ЖК-мониторов обычно характеризуется углами обзора, отсчитываемыми от перпендикуляра к плоскости экрана по горизонтали и вертикали. Современные модели ЖК-мониторов обеспечивают значения углов обзора: по горизонтали — от 45 до 70° (вправо и влево); по вертикали — от 15 до 50° (вниз) и от 20 до 70° (вверх).

Разрешение ЖК-монитора определяется размером отдельной ЖК-ячейки, т. е. фиксированным размером пикселов. Например, если LCD-монитор имеет разрешение 1024x768, это значит, что на каждой из 768 линий расположено 1024 электродов, т.е. пикселов. При этом можно использовать и более низкое разрешение. Для этого существуют два метода.

Метод «Centering» (центрирование) состоит в том, что для отображения изображения используется только то количество пикселов, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине: все неиспользуемые пикселы остаются черными, образуя вокруг изображения широкую черную рамку.

Метод «Expansion» (растяжение) основан на растяжении изображения на весь экран, что приводит к возникновению некоторых искажений и ухудшению резкости.

Яркость — важнейший параметр при выборе ЖК-монитора. Типовая яркость ЖК-монитора 150 — 200 кд/м2. При этом в центре яркость ЖК-монитора может быть на 25 % выше, чем у краев экрана.

Контрастность изображения ЖК-монитора показывает, во сколько раз его яркость изменяется при изменении уровня видеосигнала от минимального до максимального. Приемлемая цветопередача обеспечивается при контрастности не менее 130:1, а высококачественная — при 350:1.

Инерционность ЖК-монитора характеризуется минимальным временем, необходимым для активизации его ячейки, и составляет 30 — 70 мс, соответствуя аналогичным параметрам ЭЛТ-мониторов.

Палитра ЖК-мониторов, по сравнению с обычными, ограничена определенным количеством воспроизводимых на экране оттенков цветов. Типовой размер палитры современных ЖК-мониторов составляет 262 144 или 16 777 216 оттенков цветов.

Массогабаритные характеристики и энергопотребление выгодно ! отличают ЖК-мониторы от ЭЛТ-мониторов. Масса большинства моделей не превышает нескольких килограмм, а толщина экрана — 20 мм. Потребляемая мощность в рабочем режиме не превышает 35-40 Вт.

Плазменные дисплеи (Plasma Display Panel — PDF) создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном. Затем на стеклянную поверхность наносят миниатюрные прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком.

Фактически каждый пиксел на экране работает как обычная лампа дневного света. Высокая яркость и контрастность наряду с отсутствием дрожания являются важнейшими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым можно увидеть изображение на плазменных мониторах, существенно больше, чем у ЖК-мониторов. Основными недостатками такого типа мониторов являются высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме того, свойства люминофорных элементов со временем ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов ограничен 10 000 ч, что составляет около 5 лет при интенсивном использовании. Из-за этих ограничений подобные мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экрана для отображения информации. Такие крупнейшие производители, как Fujitsu, Matsushita, Mitsubishi, NEC, Pioneer и др., начали производство плазменных мониторов с диагональю 40" и более.

Электролюминесцентные мониторы (Electric Luminiescent Displays — ELD) no своей конструкции аналогичны ЖК-мониторам. Принцип действия электролюминесцентных мониторов основан на явлении испускании света при возникновении туннельного эффекта в полупроводниковом переходе. Такие мониторы имеют высокие частоты развертки и яркость свечения, кроме того, они надежны в работе. Однако они уступают ЖК-мониторам по энергопотреблению, поскольку на ячейки подается относительно высокое напряжение — около 100 В. При ярком освещении цвета электролюминесцентных мониторов тускнеют.

Мониторы электростатической эмиссии (Field Emission Displays — FED) являются сочетанием традиционной технологии, основан-

ной на использовании ЭЛТ, и жидкокристаллической технологии. Мониторы FED основаны на процессе, который несколько похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. В качестве пикселов применяются такие же зерна люминофора, как и в ЭЛТ-мониторе, что позволяет получить чистые и сочные цвета, свойственные обычным мониторам. Однако активизация этих зерен производится не электронным лучом, а электронными ключами, подобными тем, что используются в ЖК-мониторах, построенных по TFT-технологии. Управление этими ключами осуществляется специальной схемой, принцип действия которой аналогичен принципу действия контроллера ЖК-монитора. Для функционирования монитора электростатической эмиссии необходимо высокое напряжение — около 5000 В. Энергопотребление мониторов электростатической эмиссии значительно выше, чем ЖК-мониторов, но на 30 % ниже, чем энергопотребление ЭЛТ-мониторов с экраном того же размера. В настоящее время эта технология обеспечивает наилучшее качество изображения среди всех плоскопанельных мониторов и самую низкую инерционность (около 5 мкс).

Органические светодиодные мониторы (Organic Light-Emitting Diode Displays — OLEDs), или LEP-мониторы (Light Emission Plastics — светоизлучающий пластик), по своей технологии похожи на ЖК-и ELD-мониторы, но отличаются материалом, из которого изготавливается экран: в LEP-мониторах используется специальный органический полимер (пластик), обладающий свойством полупроводимости. При пропускании электрического тока такой материал начинает светиться.

Основные преимущества технологии LEP по сравнению с рассмотренными:

š низкое энергопотребление (подводимое к пикселу напряжение менее 3 В);

š простота конструкции и технологии изготовления;

š тонкий (около 2 мм) экран;

š малая инерционность (менее 1 мкс).

К существенным недостаткам этой технологии следует отнести малую яркость свечения экрана; малый размер экрана. LEP-мониторы используются пока только в портативных устройствах, например, в сотовых телефонах.

Выбор той или иной модели монитора зависит от характера информации, с которой будет работать пользователь, и задач, Которые он ставит перед собой, а также от суммы выделенных средств на приобретение монитора. Российский рынок мониторов Постоянно пополняется новыми моделями. Если модель уже выбрана, при выборе конкретного экземпляра полезно следовать Приведенным ниже рекомендациям.

 

Выбор монитора

При выборе монитора следует провести тестирование качества выводимого на экран монитора изображения с помощью специальный утилиты, например, Nokia Monitor Test. В случае отсутствия специальных утилит используют визуальный контроль качества. Предварительно необходимо включить монитор и дать ему прогреться не менее 20 мин. После непрерывной работы в течение 1,5 — 2ч можно заметить такой тип брака, как появление на экране слабо выраженных нарушений чистоты тона, хорошо заметных на белом фоне и с большого расстояния. На некоторых мониторах такой эффект может выражаться достаточно сильно. Например, весь экран может приобрести голубоватый оттенок, а пятна на нем — желтоватый. Подобные проблемы связаны с термодеформацией маски ЭЛТ-монитора.

Проверка фокусировки электронных пушек как в центре экрана, так и по углам производится путем наблюдения темного текста на светлом фоне в центре и в углах экрана. Буквы должны быть четкими и хорошо читаемыми, а на краях экрана пикселы не должны размазываться или двоиться.

Проверка сведения может быть выполнена путем наблюдения белых линий, отображаемых на черном фоне. Если на линии появляются полосы другого цвета, воспроизведение на данном мониторе мелких объектов, таких, как символы или линии, может быть невысокого качества.

Геометрические искажения можно выявить путем перемещения объекта с постоянными размерами, например приложением любого окна небольшого размера к экрану и измерением его размеров в разных частях экрана. Если размеры окна изменяются в разных частях экрана, значит, присутствует геометрическое искажение, которое, скорее всего, нельзя исправить, особенно если в мониторе не предусмотрены изменяемые параметры настройки геометрии в достаточном количестве.

Цветопередача может быть проконтролирована путем последовательного отображения на экране чистых красного, зеленого и синего цветов и наблюдения за тем, как эти цвета отображаются на экране. Если цвет отображается неправильно, значит, у монитора неверная цветопередача.

Неравномерность засветки выявляют при выведении на экран полностью белого изображения. Яркость должна быть равномерной по всей площади и не должно быть заметно никаких явных цветных или темных пятен.

Муар, или комбинационное искажение, проявляется на фоне или вокруг объектов в виде контуров линий, волн, ряби и т.д. Муар является следствием естественной интерференции, которая проявляется на всех ЭЛТ-мониторах. Муар зависит от используемого разрешения и размера монитора и лучше всего заметен именно в высоких разрешениях на мониторах с прекрасно сфокусированными лучами. Если виден муар, значит, монитор хорошо сфокусирован. Если муара вообще не наблюдается, значит, у монитора плохая фокусировка. В некоторых мониторах предусмотрена регулировка муара, что позволяет сделать его незаметным.

 


Вопросы для конспектирования студентами:

Часть 1. Мониторы

1. Мониторы на основе ЭЛТ

а) Конструкция

б) Формирование растра

в) Особенности цифровых мониторов

г) Особенности аналоговых мониторов

д) Механизм цветового зрения

е) Схема образования цветов на экране

ж) Типы ЭЛТ (заполнить таблицу):

Тип Производитель Схема Преимущества Недостатки
         

з) Основные характеристики (заполнить таблицу):

Характеристика Определение Количественные показатели
     

2. Мультимедийные мониторы

а) Особенность

б) Характеристики

3. Плоскопанельные мониторы. ЖК-мониторы:

а) физические основы,

б) устройство,

в) принцип действия

г) Основные характеристики ЖКМ(заполнить таблицу):

Характеристика Определение Количественные показатели
     

4. Другие типы мониторов (заполнить таблицу):

Тип Устрой-ство Преиму-щества Недо-статки
Плазменные дисплеи Электролюминесцентные Мониторы люминесцентной эмиссии Органические светодиодные мониторы      

5. Принципы выбора монитора

 







Дата добавления: 2015-09-07; просмотров: 237. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.012 сек.) русская версия | украинская версия