Студопедия — Механизм активации дыхательных субстратов, пути их включения в процессы биологического окисления
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Механизм активации дыхательных субстратов, пути их включения в процессы биологического окисления






Соссюр, работая с зелеными растениями в темноте, обна­ружил, что они выделяют СО2 даже в бескислородной среде. Л. Пастер нашел, что в темноте в отсутствие кислорода в растительных тканях наряду с выделением СО2 образуется спирт, т. е. идет спиртовое брожение. Он пришел к выводу, что в растительных тканях, так же как и у бактерий, воз­можно спиртовое брожение.

Немецкий физиолог Э. Ф. Пфлюгер (1875) показал, что лягушки в среде без кислорода некоторое время остаются живыми и при этом выделяют СО2. Пфлюгер назвал это дыхание интрамолекуляр­ным, т. е. дыханием за счет внутримолекулярного окисления субстрата, и оно является начальным этапом нормального аэробного дыхания. Немецкий физиолог растений Б. Пфеффер распространил эту точку зрения на растительные организмы. Пфеффером и Пфлюгером были предложены два уравнения, описывающие механизм дыхания:

1) С6Н12О6 → 2С2Н5ОН + 2СО2

2) 2Н5ОН + 6О2 →4СО2 + 6Н2О

С6Н12О6 + 6О2 → 6СО2 + 6Н2О

На первом, анаэробном, этапе происходит спиртовое брожение, образуются две молекулы этанола и две молекулы СО2. Затем в присутствии кислорода спирт, взаимодействуя с ним, окисляется до СО2 и Н2О.

2
С. П. Костычев (1910) экспериментально доказал, что этанол не может быть промежуточным продуктом нормального аэробного дыхания у растений по двум причинам: во-первых, он ядовит для растений и не может накапливаться, во-вторых, этанол окисляется растительными тканями хуже, чем глюкоза. Костычев предложил свою формулу связи анаэробной и аэробной частей дыхания и различных видов брожения:

       
   
Дыхание
 
 
   
Брожение
 

 

 


В опытах Костычева и его сотрудников (1912 — 1928) было показано, что если растительные ткани кратковременно вы­держать в бескислородной среде, а затем дать кислород, то наблюдается резкое усиление дыхания, т. е. в ходе анаэробной фазы накапливаются промежуточные продукты, которые в при­сутствии кислорода быстро используются. Ингибиторы, бло­кирующие брожение, например NaF, блокируют и аэробное дыхание. Костычев пришел к выводу о том, что промежуточным продуктом может быть уксусный альдегид. Благодаря работам немецкого биохимика К. Нейберга, Костычева и других стало очевидным, что дыхание и все виды брожения связаны между собой через пировиноградную кислоту (ПВК):

Глюкоза является стабильным соединением. Для того чтобы подвергнуться дыхательному распаду, она должна быть активирована. Значение анаэробного этапа дыхания и брожения состоит в преодолении химической инертности молекулы гексозы, т.е. в ее лабилизации и активации. Активация глюкозы происходит на первом, подготовительном, этапе гликолиза (см.гликолиз 4.1.2).

4. Основные пути диссимиляции углеводов.

Основными путями диссимиляции углеводов являются 1) гликолитический путь, 2) пентозофосфатный путь; 3) циклы ди- и трикарбоновых кислот.

Гликолитический путь, в основе которого лежит двукратное фосфорилирование гексозы, и ПФП с одним фосфорилированием глюкозы — не единственные пути окисления молекулы сахара. Некоторые организмы способны окислять и нефосфо-рилированную глюкозу. Этот путь прямого окисления сахаров обнаружен у некоторых бактерий, грибов и животных, а также у фотосинтезирующих морских водорослей. Ферментативное окисление глюкозы в глюконовую кислоту сопровождается выделением пероксида водорода, который затем разлагается каталазой или пероксидазой. Образовавшаяся глюконовая кислота может вовлекаться в дальнейший метаболизм после ее фосфорилирования через образование двух триоз − пировиноградной кисло­ты и 3-фосфоглицеринового альдегида, которые через ПВК могут окисляться в цикле Кребса.

 

 
 

Если в процессе дыхания прямому окислению подвергаются и другие сахара, кроме глюкозы, то образуется целое семейство кислот, названных кислотами прямого (первичного) окисления сахаров.

 
 
 

Дыхательные циклы − гликолиз и цикл ди- и трикарбоновых кислот, ПФП и прямое окисление сахаров − система взаимосвязанных процессов. Ниже представлена схема этих взаимосвязей:

 

Связь между гликолизом и ПФП осуществляется через глюконовую кислоту и фосфотриозы. В клетке гликолиз и ПФП пространственно не отделены друг от друга. Эти процессы протекают в растворимой в растворимой части цитоплазмы, в пропластидах и хлоропластах. Они имеют общие субстраты — глюкозо-6-фосфат, фруктозо-6-фосфат и 3-фосфоглицериновый альдегид. В норме доля пентозофосфатного цикла в общем дыхательном обмене составляет 10−40% и варьирует в зависимости от типа ткани и ее функциональ­ного состояния. В анаэробных условиях гликолиз доминирует над ПФП. Однако в хлоропластах активность окислительного апотомического пути намного выше по сравнению с гликоли­зом. В цитоплазме большая часть продуктов ПФП метаболизируется через гликолиз.

Активность ПФП увеличивается при неблагоприятных усло­виях: засухе, калийном голодании, инфекции, затенении, засо­лении, при старении.

4.1. Гликолиз: понятие, этапы, энергетический выход, значение

4.1.1. Гликолиз- процесс анаэробного распада глюкозы, идущий с освобождением энергии, конечным продуктом которого яв­ляется пировиноградная кислота. Гликолиз - общий начальный этап аэробного дыхания и всех видов брожения. Реакции гликолиза протекают в растворимой части цитоплазмы (цитозоле) и в хлоропластах.

А. Гарден и Л. А. Иванов в 1905 г. независимо показали, что в процессе спиртового брожения наблюдается связывание неорганического фосфата и превращение его в органическую форму. Гарден установил, что глюкоза подвергается анаэробному распаду только после ее фосфорилирования.

4.1.2. Этапы гликолиза: ****

I. Подготовительный этап — фосфорилирование гексозы и ее расщепление на две фосфотриозы.

II. Первое субстратное фосфорилирование, которое начинается с 3-фосфо-глицеринового альдегида и кончается 3-фосфоглицериновой кислотой. В этом процессе на каждую фосфотриозу синтезируется одна молекула АТФ.

III. Второе субстратное фосфорилирование, при котором 3-фосфо-глицериновая кислота за счет внутримолекулярного окисления отдает фосфат с образованием АТФ.

На активацию глюкозы необходима затрата энергии, что осуществляется в процессе образования фосфорных эфиров глюкозы в ряде подготовительных реакций. Глюкоза (в пиранозной форме) фосфорилируется АТР с участием гексокиназы, превращаясь в глюкозо-6-фосфат, который изомеризуется с помощью глюкозофосфатизомеразы в фруктозо-6-фосфат (фуранозная форма), являющуюся более лабильной формой молекулы гексозы.

******

Фруктозо-6-фосфат фосфорилируется вторично фосфофруктокиназой с использованием еще одной молекулы АТР. Образующийся фруктозо-1,6-дифосфат - лабильная фуранозная форма с симметрично расположенными фосфатными группами. Обе эти группы несут отрицательный заряд отталкиваясь друг от друга электростатически. Такая структура легко расщепляется альдолазой на две фосфотриозы − на 3-фосфоглицериновый альдегид (3-ФГА) и фосфодиоксиацетон (ФДА).

3-ФГА и ФДА легко превра­щаются друг в друга с участием триозофосфатизомеразы. Из-за расщепления молекулы гексозы на две триозы гликолиз иногда называют дихотомическим путем окисления глюкозы.

С 3-ФГА начинается II этап гликолиза - первое субстрат­ное фосфорилирование. Фермент дегидрогеназа фосфоглицеринового альдегида (NAD-зависимый SH-фермент) образует с 3-ФГА фермент-субстратный комплекс, в котором происхо­дит окисление субстрата, передача электронов и протонов на NAD + и образование высокоэнергетической связи (т. е. связь с очень высокой свободной энергией гидролиза). Далее осуществляется фосфоролиз этой связи: SH-фермент отщепляется от субстрата, а к остатку карбоксильной группы субстрата присоединяется неорганиче­ский фосфат. Высокоэнергетическая фосфатная группа с помощью фосфоглицераткиназы передается на AДФ и образуется АТФ. Так как в данном случае высокоэнергетическая ковалентная связь фосфата формируется прямо на окисляемом субстрате, такой процесс получил название субстратного фосфорилирования. Таким образом, в. результате II этапа глико­лиза образуются АТР и восстановленный NADH:

Последний этап гликолиза - второе субстратное фосфорилирование. 3-Фосфоглицериновая кислота с помощью фосфоглицератмутазы превращается в 2-фосфоглицериновую кислоту. Далее фермент енолаза катализирует отщепление воды от 2-фосфоглицериновой кислоты в молекуле, в результате чего образуется фосфоенолпируват − соединение, содержащее высокоэнергетическую фосфатную связь Фосфат фосфоенолпируватв при участии пируваткиназы передается на AДФ и образуется АТР, а енолпируват самопроизвольно переходит в более стабильную форму - пируват − конечный продукт гликолиза.

4.1.3. Энергетический выход гликолиза. При окислении одной мо­лекулы глюкозы образуются две молекулы пировиноградной кислоты. При этом за счет первого и второго субстратного фосфорилирования образуются четыре молекулы АТФ. Однако две молекулы АТФ тратятся на фосфорилирование гексозы на I этапе гликолиза. Таким образом, чистый выход гликолитического субстратного фосфорилирования составляет две молекулы АТФ.

Кроме того, на II этапе гликолиза на каждую из двух молекул фосфотриоз восстанавливается по одной молекуле НАДH. Окисление одной молекулы НАДH в электронтранспортной цепи митохондрий в присутствии О2 сопряжено с синтезом трех молекул АТФ, а в расчете на две триозы (т. е. на одну молекулу глюкозы) - шесть молекул АТФ. Таким образом, всего в процессе гликолиза (при условии последующего окисления НАДH) образуются восемь молекул АТФ. Поскольку свободная энергия гидролиза одной молекулы АТФ во внутриклеточных условиях составляет около 41,868 кДж/моль (10 ккал), восемь молекул АТР дают 335 кДж/моль, или 80 ккал. Таков полный энергетический выход гликолиза в аэроб­ных условиях.

Суммарное уравнение гликолиза:

С6Н12О6 + 2 АТФ + 2 НАД+ + 2Фн + 4АДФ 2 ПВК + 4АТФ + 2НАДН

4.1.4. Значение гликолиза:

1) осуществляет связь между дыха­тельными субстратами и циклом Кребса;

2) поставляет на нужды клетки две молекулы АТФи две молекулы НАДH при окислении каждой молекулы глюкозы (в условиях аноксии гликолиз, по-видимому, служит основным источником АТФ в клетке);

3) производит интермедиаты для синтетических процессов в клетке (например, фосфоенолпиру­ват, необходимый для образования фенольных соединений и лигнина);

4) в хлоропластах обеспе­чивает прямой путь для синтеза АТФ, независимый от поста­вок НАДФH; кроме того, через гликолиз в хлоропластах запасенный крахмал метаболизируется в триозы, которые затем экспортируются из хлоропласта.

 







Дата добавления: 2015-09-07; просмотров: 1719. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия