Развитие современной концепции
Биохимического единства всего Живого Пока в биологии не существовало методов физико-химического исследования и сколько-нибудь ясных теоретических концепций, сущность живого сводили к наличию некоей «таинственной силы», благодаря которой развивается и воспроизводится все живое. Такой подход к пониманию живого называют витализмом. Витализм уводил исследователей по ложному пути и не способствовал постижению принципов функционирования живых организмов. Эти принципы были раскрыты на пути детального изучения процессов обмена веществом, энергией и информацией в живых системах разного уровня организации, начиная от клетки и заканчивая биосферой. Углубление современных знаний о происхождении жизни приводит к появлению различных теорий предбиологической эволюции. Существует несколько точек зрения на саму природу образования жизни на Земле. Первая заключается в следующем: жизнь возникла на Земле из неживых (минеральных) форм. Следовательно: а) жизнь представляет собой направленный вектор эволюции от неживого к живому; б) грань живого и неживого весьма резка, а сама жизнь крайне неустойчива и может в любой момент вернуться в область неживого; в) живое из неживого — событие почти невероятное! Особенно если учесть, что на близко расположенных планетах Вторая посылка: жизнь получила развитие на Земле. Это означает, что: а) жизнь является порождением Космоса, а Земля предоставила лишь необходимые условия для ее развития (в космическом пространстве на орбите между Марсом и Юпитером находится пояс астероидов, из которого к нам на Землю по падают некоторые разновидности метеоритов (хондриты), содержащие весьма высокие (до нескольких процентов!) концентрации углерода неорганического происхождения, из которого возможен синтез первоосновы жизни — аминокислот; б) преджизненная основа — весьма устойчивое образование, раз она может преодолевать громадные расстояния в Космосе; в) сущность принципа Пастера — Реди (живое только от живого); г) жизнь — не такое уж редкое событие во Вселенной. Анализируя феномен живого вещества, можно заключить, что он препятствует вырождению материи во Вселенной, так как часть ее бесструктурного состояния переходит в структурное, понижая энтропию системы. Фотосинтез — прекрасная иллюстрация этому. Переход от неживого к живому осуществился после того, как на базе предшествующих предбиологических структур возникли и развились зачатки двух основополагающих жизненных систем: системы обмена веществ (метаболизма) и системы воспроизводства живой клетки. Пока невозможно сказать, как конкретно происходило это развитие. В современной природе мы наблюдаем, конечный результат того качественного скачка, который привел к образованию живой клетки, и последовавшего за этим процесса биологической эволюции. Изучение указанных систем дало важнейший попутный результат: сформировалась фундаментальная для всего естествознания идея единства состава и механизмов функционирования живой природы независимо от уровня организации составляющих ее структур. Эта идея, зародившаяся еще в XIX в., обрела вид законченной концепции биохимического единства живого в 1920-х гг. благодаря трудам голландских микробиологов А. Клюйвера и Г. Донкера. К настоящему времени эта падают некоторые разновидности метеоритов (хондриты), содержащие весьма высокие (до нескольких процентов!) концентрации углерода неорганического происхождения, из которого возможен синтез первоосновы жизни — аминокислот; б) преджизненная основа — весьма устойчивое образование, раз она может преодолевать громадные расстояния в Космосе; в) сущность принципа Пастера — Реди (живое только от живого); г) жизнь — не такое уж редкое событие во Вселенной. Анализируя феномен живого вещества, можно заключить, что он препятствует вырождению материи во Вселенной, так как часть ее бесструктурного состояния переходит в структурное, понижая энтропию системы. Фотосинтез — прекрасная иллюстрация этому. Переход от неживого к живому осуществился после того, как на базе предшествующих предбиологических структур возникли и развились зачатки двух основополагающих жизненных систем: системы обмена веществ (метаболизма) и системы воспроизводства живой клетки. Пока невозможно сказать, как конкретно происходило это развитие. В современной природе мы наблюдаем, конечный результат того качественного скачка, который привел к образованию живой клетки, и последовавшего за этим процесса биологической эволюции. Изучение указанных систем дало важнейший попутный результат: сформировалась фундаментальная для всего естествознания идея единства состава и механизмов функционирования живой природы независимо от уровня организации составляющих ее структур. Эта идея, зародившаяся еще в XIX в., обрела вид законченной концепции биохимического единства живого в 1920-х гг. благодаря трудам голландских микробиологов А. Клюйвера и Г. Донкера. К настоящему времени эта концепция обоснована результатами всесторонних исследований, которые исчерпывающе демонстрируют единство всего живого по самым фундаментальным свойствам: схожесть химического состава, свойство хиральности живого, универсальная роль аденозинтрифосфата (АТФ) в качестве аккумулятора и переносчика биологически запасенной энергии; универсальность генетического кода и др.
61. За счет чего функционирует энергетика живого? Все функции живых систем, требующие расходования энергии, должны обеспечиваться ею от некоторых внешних источников. Ими являются органические вещества с запасенной в них химической энергией. Часть организмов синтезирует эти вещества внутри себя из неорганических веществ. Например, из углекислого газа и воды под действием солнечного света (такой процесс называется фотосинтезом ) или в процессе окисления хемосинтез в некоторых бактериях). Эти организмы называют автотрофами. Большинство автотрофов — это зеленые растения, осуществляющие фотосинтез. Другая часть организмов (например, все животные и человек), называемых гетеротрофами, приспособилась к потреблению энергии из готовых органических веществ, синтезированных автотрофами. Питательные органические вещества, поглощаемые гетеротрофами, обладают большей упорядоченностью (меньшей энтропией), чем выделяемые продукты обмена. Организмы гетеротрофов переносят упорядоченность (негэнтропию) из внешней среды в самих себя. Для автотрофов эта же цель достигается путем выполнения внутренней работы за счет энергии электромагнитного излучения солнца. Таким образом, назначение метаболизма, то есть обмена веществ живой системы с внешней средой, состоит в поддержании определенного уровня организации этой системы и ее частей. Эта цель достигается за счет отбора извне веществ и энергии, которые обеспечивают химический синтез необходимых организму соединений, а также вывод из живой системы всего, что не может быть ею использовано. Метаболизм необходим для противодействия увеличению энтропии, обусловленному необратимыми процессами в живой системе. Между двумя типами организмов — авто- и гетеротрофами — существует пищевая (трофическая) связь. Живые системы образуют пищевые цепочки: энергия, накопленная при фотосинте зе растениями, передается через травоядных к хищникам; заключительным звеном пищевой цепочки являются микробы, перерабатывающие вещество отмерших организмов в неорганические вещества. В последующем эти молекулы вновь могут участвовать в образовании живых систем. В итоге в биосфере сформировался глобальный круговорот веществ, который обусловлен так называемыми биогеохимическими циклами. Основными являются циклы обращения в биосфере воды, а также элементов, из которых состоят живые системы. Первоисточником энергетического потока, проходящего сквозь все пищевые цепочки в биосфере, служит энергия солнечного электромагнитного излучения,попадающая на поверхность Земли в видимом диапазоне (свет). Финалом преобразований в пищевых цепочках является освобождение энергии в виде тепла при переработке микробами органических остатков. Вся высвободившаяся в процессе жизнедеятельности в биосфере энергия возвращается поверхностью Земли в мировое пространство главным образом в виде электромагнитного излучения инфракрасного диапазона. В глобальном энергетическом балансе принципиально важно, что энтропия поступающего на Землю коротковолнового излучения меньше, чем энтропия длинноволнового излучения, переизлучаемого нашей планетой. За счет этой отрицательной разности энтропии на поверхности Земли возможно образование и поддержание упорядоченных структур (как это происходит и во многих других природных системах). Вся биосфера Земли представляет собой высокоорганизованную систему, упорядоченность в которой поддерживается за счет отрицательного энтропийного баланса.
|