Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дніпропетровськ 2013

Міністерство освіти і науки, молоді і спорту України

Державний вищий навчальний заклад «Національний гірничий університет»

Кафедра екології

Контрольна робота

з дисципліни:

«Природоохоронне інспектування »

На тему: лабороторні методи дослідження грунту при проведенні екологічного інспектування

Виконав: ст. гр. Б-ЕО-09-1

Авчіннікова Жанна Олександрівна

Перевірив: Богданов В.К

Шифр 233972

Дніпропетровськ 2013

Зміст

лабороторні методи дослідження грунту при проведенні екологічного інспектування……………..3

список літератури……………………………………………………………………………………………………………………………28

 

1. Определение влажности почв

Влажность почвы зависит от количества перегноя и глинистих частиц, является косвенным показателем ее гранулометрического состава. На фоне урбанистического пресса происходит изменение

влажности почв, поэтому исследование данного показателя является необходимым.

Определение гигроскопической влажности. Основные понятия. Гигроскопической влагой называется то ко-

личество воды, которое поглощает почва из воздуха, насыщенного парами воды. Величина гигроскопической влажности зависит от гранулометрического состава почвы, количества коллоидов и гумуса в ней. Этой величиной пользуются для вычисления влажности завядания растений (коэффициента завядания). Она соответствует в большинстве случаев полуторной – двойной максимальной гигроскопической влажности. Ход определения. Определение гигроскопической влажности проводят следующем образом. Сушильный стаканчик (стеклянный бюкс) высушивают и взвешивают на аналитических весах. Берут навеску почвы в бюкс и взвешивают. Бюкс с навеской почвы помещают в прогретый сушильный шкаф. Высушивание производят при температуре 105 °C до постоянного веса. В процес се сушки нельзя открывать шкаф и ставить в него новые стаканчики. По окончании высушивания стаканчики вынимают из сушильного шкафа щипцами с резиновыми наконечниками, закрывают крышками и ставят в эксикатор для охлаждения (20–30 мин.). После охлаждения стаканчики взвешивают закрытыми и по потере в весе вычисляют содержание гигроскопической воды в почве. Определение гигроскопической воды проводят в 2-кратной повторности и вычисляют среднее из этих определений.

Определение полевой влажности

Основные понятия. Влажностью почвы называют то количество воды, которое содержится в ней в данный момент. Влажность почвы непрерывно изменяется вследствие передвижения влаги по профилю и ее испарения из почвы. Этой величиной пользуются для вычисления запаса влаги в том или ином горизонте почвы и для вычисления коэффициента пересчета с влажной почвы на сухую. Наиболее распространенным является метод высушивания почвы в термостате.

Ход определения. Для определения полевой влажности на месте взятия образца берут буром или ножом массу почвы с заданной глубины. Из пахотного слоя образец берут на всю глубину или из нескольких слоев (0–5, 5–10, 10–15, 15–20 см). На технохимических весах взвешивают алюминиевый стаканчик с крышкой, помещают в него на ½–1/3 объема почву и снова взвешивают, закрыв крышкой. Образец высушивают в сушильном шкафу при температуре 105 °C в течение 5 часов (крышка стаканчика должна быть надета на дно) и после охлаждения в эксикаторе снова взвешивают. Высушивание и взвешивание повторяют до

постоянной массы. Полевую влажность рассчитывают в весовых процентах по формуле:

А = а/в • 100,

где: А – полевая влажность, % (весовой);

а – масса испарившейся влаги, г;

в – масса сухой почвы после высушивания, г;

100 – коэффициент пересчета в проценты.

Для многих анализов, которые проводятся со свежей почвой, нужно знать коэффициент пересчета с влажной на сухую почву.

Его вычисляют по формуле

К = 100 + А/100,

где: А – полевая влажность, %.

 

2. Определение физических параметров почвы

(плотность твердой фазы, порозность, воздухообеспеченность)

Определение плотности (удельного веса) твердой фазы почвы

Общие понятия. Плотностью (удельным весом) твердой фазы почвы называется отношение массы твердой фазы определенного объема к массе воды того же объема при 4 °C. Величина плотности (удельного веса) твердой фазы почвы зависит от количества органического вещества, удельный вес которого равен в среднем 1,4, и минералогического состава ее, так как удельный вес различныхминералов почв колеблется от 2,5 до 3,8. В большинстве случав плотность твердой фазы (удельный вес) почвы в среднем равна 2,50–2,65. Знание плотности (удельного веса) твердой фазы почвы необходимо для вычисления скважности почвы. Плотность (удельный вес) твердой фазы почвы определяют из образца почвы с нарушенной структурой, т. е. растертой в порошок пикнометрическим способом – путем определения объема какой-либо навески почвы при вытеснении ею воды. В качестве пикнометра обычно употребляют мерную колбу на 100 мл.

Ход определения. На аналитических весах берут 10 г воздушносухой почвы с точностью до 0,001 г в небольшую фарфоровую чашку. Одновременно в отдельной навеске определяют гигроскопическую воду. Для удаления из дистиллированной воды воздуха 200–250 мл кипятят в колбе в течение 30 мин., далее охлаждают до комнатной температуры. Затем пикнометр на 100 мл наполняют точно до метки этой водой и взвешивают на аналитических весах. Пикнометр во время работы нужно брать только за горлышко и не нагревать его рукой, так как даже незначительные колебания температуры отражаются на точности определения плотности (удельного веса). Рекомендуется записать температуру, при которой проводилось первое взвешивание пикнометра. После взвешивания из пикнометра отливают примерно половину воды и, вставив в его горлышко воронку, осторожно пересыпают взятую навеску почвы. Смывают приставшие к воронке и чашке твердые частицы почвы дистиллированной водой в пикнометр и кипятят его содержимое на электрической плитке или спиртовке 30 мин., не допуская разбрызгивания. После кипячения пикнометр охлаждают до первоначальной температуры, доливают оставшейся прокипяченной водой до метки и взвешивают вторично. Если охлаждение пікнометра проводят в сосуде с водой, наружные стенки его перед взвешиванием тщательно обтирают фильтровальной бумагой. Вычисление плотности твердой фазы (удельного веса) проводят по формуле:

D = В/А + В – С,

где: D – плотность (удельный вес) твердой фазы почвы;

B – навеска сухой почвы, г;

A – масса пикнометра с водой, г;

C – масса пикнометра с водой и почвой, г.

Определение скважности и воздухообеспеченности

(скважности аэрации)

Величину общей скважности обычно вычисляют по соотношению плотности твердой фазы (удельного веса) и плотности сложения (объемного веса) почвы. Если обозначить через D плотность твердой фазы (удельный вес), а через d плотность почвы, то отношение даст объем, занимаемый твердыми частицами в одинице объема почвы. Разность между единицей и объемом, занимаемым твердыми частицами почвы, составит общую скважность ее в данной единице объема. Умножив эту величину на 100, получают общую скважность почвы, выраженную в объемных процентах.

Поэтому общую скважность вычисляют обычно по формуле:

Р = 100(1 – d/D),

где: P – общая скважность почвы, %;

d – плотность сложения почвы, г/см3;

D – плотность твердой фазы (удельный вес) почвы.

Для определения величины отдельных видов скважности

Н. А. Качинским разработаны специальные методы.

Зная общую скважность почвы и ее влажность для данного мо-

мента, можно вычислить скважность аэрации, или воздухообеспе-

ченность, выраженную в объемных процентах

P = P – ad,

где: Р – общая скважность, %;

a – влажность почвы, %;

d – плотность, г/см3.

 

 

Умножив влажность почвы (в весовых процентах) на плотность сложения почвы, получают объем пор, занятых в данный момент водой (влажность в объемных процентах). Разность между общей скважностью и влажностью, выраженной в объемных процентах, дает скважность аэрации или воздухообеспеченность почвы.

 

3. Определение гранулометрического состава почв

Общие представления. Гранулометрическим (механическим) составом почвы называется относительное содержание и соотношение частиц (механических элементов) разного размера. Гранулометрический (механический) состав почвы определяет многие важные ее свойства: водный, воздушный и тепловой режимы, влияет на запас питательных веществ в почве, подвижность и эффективность действия вносимых удобрений. От механического состава зависят сложение, порозность, влагоемкость, влажность завядания и другие физические свойства.

Задача механического анализа – определить содержание элементарных механических частиц в почве после искусственного расчленения микроагрегатов, ранее сцементированных карбонатами, склеенных органическими и минеральными соединениями. Результаты механического анализа зависят от метода підготовки почвы, так как разные методы разрушают цементирующие вещества различной степени устойчивости.

Когда в почве определяют содержание частиц разного размера, то имеются в виду группы частиц, диаметр которых находится в определенных пределах. Такие группы называются фракциями механических элементов. Для классификации механических элементов используют шкалу Качинского (1957) Выделение скелетной части почвы на ситах. Сумма почвенных частиц размером более 1 мм называется почвенным скелетом. Сумма частиц, размер которых менее 1 мм – это мелкозем. При проведении механического анализа прежде всего выделяют камни, хрящ, крупный песок и пр., т. е. отделяют от мелкозема почвенный скелет. Для этого среднюю пробу почвы в 200–300 г частями просеивают через сито с отверстиями в 1 мм. Сито представляет собой специальное приспособление в виде мелкой сетки, натянутой на обруч, или металлическиого листа с мелкими отверстиями. Почвенные комки раздавливают в ступке пестиком с резиновым наконечником. Просеивание продолжают до тех пор, пока на сите не останутся не поддающиеся раздавливанию частицы почвы (скелет) с приставшими к ним глинистыми частицами.

 

Классификация механических элементов по Качинскому (1965)

Размер механических элементов, мм Название механических элементов

>3 Камни

3–1 Гравий

1–0,5 Песок крупный

0,5–0,25 Песок средний

0,25–0,05 Песок мелкий

0,05–0,01 Пыль крупная

0,01–0,005 Пыль средняя

0,005–0,001 Пыль мелкая

0,001–0,0005 Ил грубый

0,0005–0,0001 Ил тонкий

< 0,0001 Коллоиды

 

Оставшиеся на сите частицы минералов (скелет) рассеивают на отдельные фракции через серию сит с диаметром отверстий в 10, 5, 3 мм. После взвешивания каждой фракции отдельно вычисляют процентное содержание их на абсолютно сухую почву. Из мелкозема после соответствующей подготовки выделяют фракции 1–0,5 и 0,5–0,25 мм на ситах, а более мелкие частицы раз- деляют методом, основанным на зависимости скорости падения частиц в спокойной воде от их размера. Почвы, не содержащие карбонатов и с малым содержанием гумуса, не требуют длительной подготовки к механическому анализу, но для карбонатных почв она обязательна. У российских почвоведов наибольшее распространение получили метод подготовкипочв Н. А. Качинского и некоторые более быстрые методы, в которых и качестве диспергатора применяют пирофосфат натрия, щавелевокислый натрий или другие соединения.

Подготовка почвы к механическому анализу по Качинскому.

Образец воздушно-сухой почвы, просеянной через сито с ячейками в 1 мм, рассыпают на бумаге и ложечкой из разных мест равномерно отбирают средние пробы:

а) для определения гигроскопической воды – 4–5 г;

б) для определения потери растворимых веществ при обработке

НСl – 10–15 г;

в) для приготовления суспензии – 10 г (или 15 г для легких

почв).

В первой навеске определяют влажность высушиванием в термостате. Для определения потери от промывания заранее подготавливают фильтр, помещают в сушильный стаканчик и сушат до постоянного веса, затем кладут его на воронку и производят промывание почвы. Фильтр с почвой после промывания возвращают в тот же сушильный стаканчик, высушивают при 105–110 °C до постоянного веса. Вычитая из последнего вес сухого фильтра вместе с сушильным стаканчиком, получают вес промытой навески и вычисляют потерю от промывания. Второй фильтр, подготовляемый для обработки почвы и дальнейшего приготовления суспензии, взвешивать не нужно.

Промывание обеих навесок почвы производится одинаково: навеску помещают в фарфоровую чашечку и испытывают на присутствие карбонатов несколькими каплями 10%-ного раствора НСl. Если почва вскипает, ее неоднократно обрабатывают в чашечке небольшими порциями 0,2 н. раствора НСl до прекращения всякого выделения пузырьков газа; жидкость каждый раз сливают на фильтр. После разрушения карбонатов и прекращения выделения

СO2 почву переносят при помощи 0,05 н. раствора НСl из чашечки

на фильтр.

Почвы, в которых не обнаружено присутствие карбонатов, обрабатывают и переносят на фильтр 0,05 н. раствором НСl. Почву на фильтре продолжают промывать этим раствором до исчезновения кальция в фильтрате. Для этого 5–10 мл фильтрата помещают в пробирку и нейтрализуют 10%-ным раствором NH4ОН до появления запаха аммиака, подкисляют несколькими каплями 10%-ной уксусной кислоты и после добавления насыщенного раствора щавелевокислого аммония нагревают до кипения; помутнение указывает на присутствие кальция.

Освобожденную от кальция почву промывают водой до прекращения в фильтрате реакции на хлор (проба с нитратом серебра). В случае появления в фильтрате мути от прохождения коллоидов промывание почвы водой прекращают, несмотря на наличие хлора в промывных водах.

Один фильтр с промытой почвой высушивают, как указано выше. Второй фильтр с промытой почвой переносят в фарфоровую чашку и с фильтра струей дистиллированной воды из промивалки тщательно смывают всю почву, а приставшие к фильтру частицы счищают стеклянной палочкой. Полученную суспензию почвы переносят в коническую колбу на 750 мл с меткой на 250 мл и доливают водой до 250 мл. По методу Н. А. Качинского, в зависимости от емкости поглощения и генетических особенностей почвы, к суспензии добавляют для диспергирования 1 н. раствор NaOH в следующем количестве: для тучных черноземов – 6 мл, обыкновенных черноземов –5, серых почв – 3, для подзолистых – 1. Колбы оставляют стоять на 2 часа, встряхивая их от руки через каждые 15 мин. Колбы закрывают пробкой с обратным холодильником (отрезок стеклянной трубки, вставленной в пробку), суспензию кипятят на электрической плите 1 час, не доводя ее до бурного кипения и вспенивания.

После охлаждения необходимо проверить реакцию суспензии, для чего, переболтав содержимое колбы до появления пены, вносят в нее 1–2 капли фенолфталеина; розовое окрашивание укажет на слабощелочную реакцию. Если порозовения нет, не обходимо добавить 1 мл щелочи, переболтать и оставить на ночь, после чего вновь проверить реакцию. После охлаждения суспензию пропускают через сито с размером ячеек 0,25 мм, помещенное в воронку, опущенную в 1-литровый цилиндр. Задержавшуюся на сите почву промывают водой.Оставшиеся на сите частицы почвы размером от 0,25 до 1 мм переносят струей воды во взвешенный (предварительно) сушильный стаканчик или фарфоровую чашку, воду выпаривают, содержимое (песок) высушивают в термостате и взвешивают. Суспензию в цилиндре доливают до 1 л и анализируют методом пипетки. Вполне допустимо использование мерных цилиндров емкостью 500 мл при диаметре их не менее 4 см; при этом нижний конец пипетки должен быть настолько удален от дна цилиндра, чтобы осадок не взмучивался при взятии проб. В противном случае пробы забирают с меньшей глубины, например 20 см. При изменении глубины с 25 до 20 см время отстаивания уменьшают на 1/5.

Отбор проб пипеткой Качинского. Пипетка в нижней части имеет 4 боковых отверстия, через которые засасывается проба. Для забора проб используется резиновая груша. Суспензию почвы в цилиндре перемешивают, поднимая и опуская мешалку не менее 60 раз, а затем вынимают мешалку, включают секундомер и оставляют до момента отбора пробы. Продолжительность отстаивания частиц определенного диаметра для соответствующей температуры и удельного веса частиц приводится

 

Эффективный диа- Глубина взя-

твердой фазы 15 °С 20 °С

метр частиц, мм тия пробы, см

почвы

2,60 < 0,05 25 130” 115”

< 0,01 10 21’ 45” 19’ 14”

< 0,005 10 1 час 27’ 1 час 17’

< 0,001 7 25 час 22’ 22 час 26’

 

2,65 < 0,05 25 127” 112”

< 0,01 10 21’ 06” 18’ 39”

< 0,005 10 1 час 24’ 1 час 15’

< 0,001 7 24 час 36’ 21 час 45’

 

2,70 < 0,05 25 123” 109”

< 0,01 10 20’ 28” 18’06”

< 0,005 10 1 час 22’ 1 час 12’

< 0,001 7 23 час 53’ 21 час 07’

 

Вязкость воды заметно изменяется в зависимости от температуры и влияет на скорость оседания частиц. Температуру суспензии нужно измерять в каждом цилиндре. Если удельный вес образца неизвестен, берут средние величины для данного типа почвы. Незадолго до истечения срока отстаивания в суспензию вводят на нужную глубину пипетку и закрепляют. На пипетке для отмеривания глубины погружения должны быть отмечены тонкими резиновими кольцами расстояния 7,10 и 25 см от нижнего конца. Суспензия засасывается в пипетку 20–30 секунд, поэтому начинать засасывание надо за 10 сек. до истечения срока. В журнале записывают объем взятой пробы, так как взять точно 25 мл бывает трудно. Суспензию сливают из пипетки в тарированный сушильный стаканчик или фарфоровую чашку. Пипетку обмывают водой в этот же сосуд. Пробувыпаривают на песчаной бане и затем высушивают при 105 °C до постоянного веса. Взвешивание ведут на аналитических весах. После взятия каждой пробы содержимое в цилиндре вновь тщательно перемешивают и после оседания почвы отбирают следующую пробу. Расчет результатов механического анализа. Для равнинных почв, не содержащих отдельностей размером более 1 мм, результаты анализа выражают в процентах от веса абсолютно сухой почвы.Для почвы хрящеватой расчет производят на мелкоземистую часть, сопровождая данными о скелетной части почвы. Процентное содержание фракций, выделенных на ситах (1–0,5;

0,5–0,25 мм), вычисляют по формуле:

а • 100/C,

где: a – вес фракции, г;

C – навеска мелкозема (сухой вес), г.

Процентное содержание суммы фракций менее определенного

размера в пробах, отбираемых пипеткой, вычисляют по формуле:

а • v • 100/b • c,

где: а – вес фракции в объеме пипетки, г;

b – объем суспензии в пипетке, мл;

c – вес абсолютно сухой навески, г;

v – объем суспензии в цилиндре, мл.

Содержание фракций определенного размера находят, вычитая из данных предыдущей фракции данные последующей фракции. Процентное содержание фракции 0,25–0,05 мм определяют по разности 100% минус сумма процентного содержания всех фракцій (частиц 1–0,25, выделенных на ситах частиц менее 0,05 мм и потери от обработки) Гранулометрический состав почвы дается по отношению физического песка (частицы > 0,01 мм) к физической глине (частицы <0,01 мм) Каменистые почвы классифицируются по мелкозему, так же

как и некаменистые, но дополнительно дается оценка каменистости. Взвешиваются частицы размером более 3 мм (камни) и от 1 до 3 мм (гравий). Если суммарное их содержание превышает 10% от веса почвы, то к названию почвы добавляют слово каменистый или гравелистый по преобладающей фракции. В таблице всегда приводят данные содержания фракций в процентах от абсолютносухого мелкозема. При наличии фракций более 1 мм их содержание приводят в таблице рядом с данными механического анализа.

 

Классификация почв подзолистого типа почвообразования по

гранулометрическому составу (Н. А. Качинский)

Содержание фи- Краткое название Краткое название

Содержание физи-

зической глины почвы по грануло- почвы по грануло-

ческой глины (час-

(частиц < метрическому метрическому

тиц < 0,01 мм), %

0,01 мм), % составу составу

0–5 Песок рыхлый 40–50 Суглинок тяжелый

5–10 Песок связный 50–65 Глина легкая

10–20 Супесь 65–80 Глина средняя

20–30 Суглинок легкий > 80 Глина тяжелая

30–40 Суглинок средний – –

 

Классификация почв по каменистости

Частицы разме-

Степень каменистости Тип каменистости

ром > 3 мм, %

< 0,5 Некаменистая Устанавливается по характеру

0,5–5 Слабокаменистая скелетной части

5–10 Среднекаменистая Могут быть валунные,

> 10 Сильнокаменистая галечниковые, щебенчатые

 

4. Определение химических показателей почв

Почвы, находящиеся в условиях города, испытывают мощное воздействие техногенного пресса. Одной из составляющих этого воздействия являются аэротехногенные поллютанты – вещества-загрязнители: тяжелые металлы, органические соединения, оксиды азота, серы и пр. На фоне антропогенного воздействия происходит изменение не только физических свойств (порозности, объемного веса), но и резко изменяются химические свойства почв. В этой связи ценную информацию о состоянии почв, а значит и природной среды в целом, могут дать химические методы, широко используемые как при анализе нативных, не нарушенных, так и при исследовании антропогенно преобразованных почв. Подготовка почвы к химическому анализу. Образец почвы весом 600–750 г размещают на листе чистой оберточной или пергаментной бумаги и удаляют из него корни, включения и новообразования. Дернину тщательно отряхивают от комочков почвы.

Крупные комки почвы разламывают руками или раздробляют в фарфоровой ступке пестиком с резиновым наконечником до небольших комков, диаметром 5–7 мм (примерно до величины отдельностей мелкоореховатой структуры). Цель такого измельчения – получить более однородный образец и иметь возможность тщательно перемешать его при взятии средней пробы. Поскольку средняя проба должна характеризовать все свойства исследуемой почвы, на подготовку образца к взятию этой пробы следует обращать особое внимание. Среднюю пробу лучше брать квартованием. Для этого измельченный дроблением образец после перемешивания располагают на бумаге в виде квадрата или прямоугольника и делят діагоналями (шпателем или линейкой) на четыре равные части .

Две противоположные части (1 и 3) высыпают в картонную коробку для хранения на случай повторных или дополнительных определений. В коробку следует положить также этикетку образца и, кроме того, вторую этикетку наклеить на стенку коробки. Из оставшейся на бумаге почвы в первую очередь берут лабораторную пробу для подготовки к определению гумуса и азота.

(Пробу берут до растирания почвы в ступке, так как при растирании остатки корней измельчаются настолько, что выбрать их из пробы невозможно, поэтому результаты анализа получаются завышенными. Лабораторная проба на определение гумуса и азота. Наиболее крупные комки почвы раздавливают в фарфоровой ступке до агрегатов не больше 3–5 мм в диаметре и смешивают на листе бумаги с более мелкими частицами почвы. Почву тщательно перемешивают и распределяют по листу ровным слоем толщиной 0,5 см в виде квадрата или прямоугольника . Квадрат или прямоугольник делят горизонтальными и вертикальными линиями (шпателем или линейкой) на небольшие квадраты или прямоугольники площадью 3 x 3 см или 3 x 4 см (рис. 3, б). Из каждого квадрата или через один берут ложкой или шпателем небольшое количество почвы, захватывая ее на всю глубину слоя.

Для определения гумуса и азота требуется 5–10 г или немного меньше почвы. Если за один прием не удастся набрать это количество, почву перемешивают, снова делят на квадраты и опять берут пробу. Взятую пробу помещают на стекло с подложенной под него бумагой (для фона), тщательно отбирают корешки (под лупой),раздавливая комочки почвы пинцетом . При анализе почвы, взятой из дернового горизонта, где корешков особенно много,при отборе их иногда пользуются наэлектризованной стеклянной палочкой.

После отбора корешков почву просеивают через сито с отверстиями диаметром 0,25 мл (рис. 3, е), что позволяет получить однородный образец почвы, обеспечивающий воспроизводимость повторных определений. Минеральные частицы почвы, остающиеся на сите (если диаметр их меньше 1 мм), растирают в ступке и присоединяют к той части почвы, которая прошла через сито. Пробу тщательно перемешивают и хранят в пакетике из бумажной кальки или пергамента с обозначением номера разреза и глубины Горизонта. Оставшуюся часть средней пробы (после взятия из нее лабораторной пробы на определение гумуса и азота) по частям растирают в фарфоровой ступке пестиком с каучуковым наконечником. Пользоваться фарфоровым пестиком без такого наконечника не полагается, так как им можно растереть обломки пород и минералов. Растирание почвы в ступке производится по возможности раздавливанием. Измельченный образец просеивают через сито Сито состоит из крышки, которая защищает почву от распыления в момент просеивания, ситовой части, содержащей сетку с отверстиями диаметром в 1 мм, и поддона, служащего приемником просеянной почвы. Просеивание следует проводить при сборе всех частей сита. Открывать сито полагается спустя 1–2 мин. после просеивания, чтобы дать пыли осесть и не потерять самую активную часть почвы – илистую фракцию.Цель просеивания – отделение мелкозема от скелета почвы. То, что остается на сите (если это не хрящ или гравий, а агрегаты почвы), снова высыпают в фарфоровую ступку, измельчают, как

указано выше, и снова просевают. Попеременное измельчение и просеивание проводят до тех пор, пока все агрегаты почвы не будут разрушены, а на сите останутся лишь частицы скелета, которые выбрасывают или взвешивают после промывания водой и,высушивания, если требуется знать процентное содержание скелета в почве (что обычно делают при определении механического состава почвы). Для химического анализа почвы используют только мелкозем.

Если почву готовят для вытяжек, подготовка ограничивается просеиванием образца через сито с отверстиями в 1 мм. Когда предполагается определить состав минеральной части почвы, т. е. провести ее валовой анализ, из просеянной почвы следует взять лабораторную пробу. Взятие лабораторной пробы на определение состава минеральной части почвы (рис. 3, з). Просеянную через почвенное сито почву помещают на лист чистой бумаги, тщательно перемешивают, распределяют ровным слоем толщиной 0,5 см, делят на мелкие квадратики или прямоугольники и набирают 5 г почвы приемом,который описан выше.

Остаток почвы помещают в банку с притертой пробкой, коробку или пакет, где хранится просеянная почва (не забыть положить в банку или коробку этикетку образца и сделать на ней соответствующую наклейку Оставшуюся часть пробы растирают в агатовой или яшмовой ступке «до пудры», т. е. до частиц диаметром 0,2 Количество почвы, растираемое за один прием, зависит от размера ступки. Обычно оно не превышает 1–2 г. Излишняя загрузка ступки ведет к потере почвы (она высыпается через край) и к ее загрязнению.

Растирание считается оконченным, если растертая почва не царапает кожу. Другой показатель полноты измельчения – слипание почвы в пластинчатые агрегаты, так как у частиц диаметром меньше 0,2 ё, силы сцепления значительны. Почву, растертую в пудру, хранят в пакетиках из кальки или пергамента с обозначением номера разреза и глубины горизонта Эту почву используют для сплавления с углекислыми щелочами, разложения плавиковой кислотой и пр. Большинство определений, например определение водорас- творимых солей, обменных оснований, емкости поглощения, кислотности, подвижных форм элементов и питательных веществ почвы, проводят с образцом, пропущенным через сито с отверстиями диаметром в 1 мм, поэтому во многих случаях підготовка почвы к анализу ограничивается просеиванием образца через почвенное сито.

Просеянную почву хранят в банках с притертой пробкой, картонных коробках или бумажных пакетах. Следует иметь в виду, что при высыпании почвы происходит разделение частиц по их удельному весу. На дно банки или коробки больше попадает тяжелых частиц, а легкие располагаются сверху, поэтому перед взятием навески образец необходимо хорошо перемешать. Количество почвы, подготовленной к химическому анализу, зависит от количества определений и величины навесок. Вес пробы на отдельное определение должен в 2–3 раза превышать анализируемую навеску (для повторных или контрольных анализов). Для анализа больше всего требуется почвы, пропущенной через сито с отверстиями диаметром в 1 мм, что видно из нижеследующего перечня определений для химической характеристики подзолистых почв

 

Вес пробы почвы, используемой в химических анализах

Наименование определений Вес пробы (г)

Обменные основания 20

рН солевой вытяжки 50

Гидролитическая кислотность 100

Усвояемый калий 50

Усвояемый фосфор 25

 

Подготовка торфа к химическому анализуПри исследовании болотных почв проводят химический аналіз торфа. Сырой торф раскладывают небольшим слоем в эмалированной ванночке и в течение нескольких дней доводят до воздушносухого состояния, многократно перемешивая образец каждый день. Высушивание следует производить в чистом и хорошо проветриваемом помещении.

Воздушно-сухой образец измельчают молотком или фарфоровым пестиком до частиц размером примерно в 1 см. Затем торф пропускают через мельницу. Измельченный образец просеивают через сито с отверстиями диаметром 2–3 мм. Частицы, остающиеся на сите, снова пропускают через мельницу. Берут среднюю пробу весом в 100 г, просеивают через сито с отверстиями диаметром в 1 мм. Частицы, остающиеся на сите, из-мельчают в фарфоровой ступке и снова просеивают через сито.

Так поступают до тех пор, пока просеют весь образец. Подготов-

ленный образец хранят в стеклянной банке с притертой пробкой,

картонной коробке или в бумажном пакете.

 

4.1. Определение кислотно-щелочных свойств

Общие положения. Важной характеристикой почв является кислотность, которая вызывается ионами водорода и алюминия. С реакцией почвенного раствора связаны процессы превращения компонентов минеральной и органической частей почвы: растворение веществ, образование осадков, диссоциация, возникновение и устойчивость комплексных соединений, миграционные процессы органо-минеральных соединений. Особенно важно знать кислотность городских почв, испытывающих загрязнение поллютантами, которые вызывают изменение кислотно-основных свойств. Носителем кислотности могут быть почвенные растворы и почвенные коллоиды. В зависимости от места нахождения ионов водорода и алюминия кислотность делится на два вида: актуальную и потенциальную, которая в свою очередь подразделяется на обменную и гидролитическую. Реакция почвенного раствора определяется концентрацией свободных Н+ и ОН- – ионов и характеризуется величиной рН, которая представляет собой отрицательный десятичный логарифм концентрации катионов водорода. Нейтральную реакцию среды характеризует рН = 7 , кислую –

рН < 7, щелочную – рН > 7. Актуальная кислотность обусловлена ионами водорода в почвенном растворе. Она определяется наличием в почвенном растворе водорастворимых кислот – щавелевой, лимонной, фульвокислот, гидролитически кислых солей и, прежде всего, угольной. Величину актуальной кислотности определяют в водной вытяжке из почвы.Обменная кислотность обусловлена наличием в почвенном поглощающем комплексе ионов водорода и алюминия, способных обмениваться на катионы нейтральных солей, например хлорида калия. Величину обменной кислотности определяют в вытяжке из почвы 1н. раствора КCl. Возможно несколько способов определения кислотности почв. Наиболее современным и быстрым является потенциометрический, основанный на измерении электродвижущей силы (э.д.с.) гальванического элемента. Он состоит из электрода сравнения с известным потенциалом и индикаторного электрода, потенціал которого зависит от концентрации активных ионов в исследуемом растворе. В качестве индикаторного электрода используют стеклянный электрод рН метра.Приготовление водной и солевой вытяжек из почв. Почву,предварительно высушенную и просеянную через сито 1 мм, взвешивают на аналитических весах. Величина навески зависит от горизонта почв: для минеральных горизонтов она составляет 10 г, для органогенных (подстилка) – 1 г. Почву помещают в колбу емкостью 100 мл Для определения кислотности в водной вытяжке почву заливают водой (25 мл), в солевой вытяжке – 1,0 н. раствором KCl(25 мл). Для лучшего диспергирования почвы в водном/солевоз растворе колбы взбалтывают в течение 10 мин., в случае больших партий, можно использовать электрическую мешалку. Приготовленные почвенные болтушки оставляют на 24 часа. По истечении срока проводят определение кислотности почв на рН-метре. Полученные данные записывают в таблицу.

представлены данные по кислотности почв на территории г. Петрозаводска (2004 г.).

Актуальная и обменная кислотность почв г. Петрозаводска

Горизонт, глубина

Место отбора почв рН Н2О рН KCl

отбора почв, см

Отвал «Горелая земля» Ad, 0–4 9,65 7,75

Сквер у реки Неглинки Ad, 0–5 6,35 5,37

Центральная часть детского сада № 86 U1, 0–5 7,00 6,35

(ул. Свердлова)

 

Гидролитическая кислотность (Нг) по Каппену определяется наличием в почве поглощенных ионов водорода и алюминия, способных обмениваться на катионы гидролитически щелочных солей. Для ее определения используют 1 н. раствор CH3COONa c рН 8,2. Гидролитическая кислотность является первой формой кислотности, которая появляется при обеднении почвы основаниями. Поскольку при однократной обработке раствором вся гидролитическая кислотность не извлекается, в расчеты вводят коэффициент 1,75 на неполноту вытеснения. В этом случае определяется вся почвенная кислотность как актуальная, так и потенциальная.

Ход анализа. Берут навеску воздушно-сухой почвы 40 г в колбу на 250 мл и приливают 100 мл 1 н. раствора уксуснокислого натрия CH3COONa. Затем содержимое колбы взбалтывают 1 час наротаторе и полученную суспензию титруют через сухой складчатый фильтр. Берут пипеткой 50 мл прозрачного фильтрата, переносят в коническую колку на 100 мл, добавляют 1–2 капли фенолфталеина и титруют 0,1 н. раствором NaOH до неисчезающей в течение 1 минуты розовой окраски. Записывают количество щелочи, пошедшей на титрование. Количество щелочи, пошедшее на титрование 50 мл фильтрата, выражают в миллилитрах щелочи точно 0,1 н. концентрации. Для перевода полученного результата в миллиграмм-эквиваленты на 100 г почвы, найденное при титровании 50 мл фильтрата количество 0,1 н. щелочи с поправкой на титр, надо умножить на 0,875.

Расчет результатов анализа

Нг (мг-экв./100 г) = 0,875 • а • К,

где: а – количество щелочи, пошедшее на титрование, мл;

К – поправка на титр щелочи;

0,875 = 5 • 0,1 • 1,75,

где: 5 – для перевода данных на 100 г почвы;

0,1 – титр щелочи;

1,75 – поправка на неполноту вытеснения.

 

Сумма поглощенных оснований по Каппену-Гильковицу (S). В почвенном поглощающем комплексе почв помимо катионов водорода и алюминия, определяющих в основном почвенную кислотность, содержатся и поглощенные основания (Ca, Mg, K, Na). Соотношение катионов водорода и алюминия, с одной стороны, и поглощенных оснований – с другой, в конечном итоге определяют реакцию почвы. Показатели гидролитической кислотности и суммы поглощенных оснований позволяют рассчитать степень насы-щенности почвы основаними. Ход анализа. Берут навеску почвы в 20 г и помещают в колбу емкостью 250 мл. Приливают точно 100 мл 0,1 н. раствора соляной кислоты (HCl) точно установленного титра. Содержимое колбы взбалтывают 1 час на ротаторе и оставляют на 24 часа. По истечении этого срока фильтруют через сухой складчатый фильтр. Изфильтрата берут пипеткой 50 мл в коническую колбочку на 200 мл и кипятят 1–2 минуты. После этого прибавляют 2 капли фенолфталеина и титруют горячий раствор 0,1 н. раствором едкого натра до неисчезающей слаборозовой окраски. Параллельно проводят титрование 50 мл 0,1 н. исходной соляной кислоты 0,1 н. рас твором щелочи.

Расчет результатов анализа

S (мг-экв./100 г) = (А – В) • К,

где: А – количество в мл 0,1 н. щелочи, пошедшей на титрование

0,1 н. кислоты;

В – количество в мл 0,1 н. щелочи, пошедшей на титрование

фильтрата;

К – поправка к титру 0,1 н. щелочи.

Для почв, богатых основаниями (> 15 мг-экв./100 г), берут на 20г почвы 200 мл 1 н. соляной кислоты и полученный результат умножают на 2.

Вычисление степени насыщенности основаниями. Степень насыщенности почвенного поглощающего комплекса основаними вычисляют по формуле:

V% = S/S+Hг • 100%,

где: V – степень насыщенности основаниями;

S – сумма поглощенных оснований, мг-экв./100 г;

Hг – величина гидролитической кислотности, мг-экв./100 г почвы.

 

4.2 Определение содержания элементов минерального питания Растения, произрастающие в условиях города, требуют для своего роста и развития полный набор питательных элементов, главным поставщиком которых, как известно, является почва. Однако в условиях городской среды почвы становятся аккумулятором не только различного мусора, но и веществ-поллютантов, которые могут оказывать отрицательное воздействие на ризосферу, тем самым вызывая гибель деревьев. Так, усыхание ели в районе центрального сквера (ул. Титова) в Петрозаводске с начала 2000 г. закончилось его гибелью (2003 г.), отмирание древесных насаждений наблюдается в микрорайонах Кукковка, Ключевая. В этой связи необходимо исследовать не только физические, но и химические свойства почв, включая микроэлементный состав.

4.3 Определение азота по методу Кьельдаля (микрометод)

Общие понятия. Валовое содержание азота в почве зависит от количества гумуса и колеблется от 0,01–0,03% в песчаных подзолистых почвах до 0,4–0,6% в черноземах и 3–4% в торфяных

почвах. Метод Кьельдаля дает возможность определить весь органический азот в почве. Количество минеральных соединений азота (нитриты, нитраты) этим методом не учитывается. Их содержание в почве очень мало (обычно несколько миллиграммов на 1 кг почвы), поэтому этой величиной можно пренебречь при определении общего количества азота в почве.

Принцип метода Кьельдаля основан на том, что все органическое вещество почвы сжигается в концентрированной серной кислоте. Азот при этом переходит в форму (NН4)2SО4. Образовавшийся (NН4)2SО4 разрушают щелочью, а выделяющийся при этой реакции NН3 улавливают в определенный объем титрованного раствора Н2SО4. Избыток Н2SО4, не израсходованный на связывание азота, оттитровывают раствором NaОН или КОН.

Ход анализа. Из образца почвы, просеянной через сито с отверстиями 0,25 мм, берут в сухую пробирку от 0,2 до 1 г почвы (в зависимости от количества гумуса в почве: чем его больше, тем

меньше навеска) и точно взвешивают на аналитических весах. Затем на пробирку надвигают горло колбы Кьельдаля и быстрым движением осторожно перевертывают колбу с находящейся в ней пробиркой. Пробирку вынимают и вновь точно взвешивают. По разности между массой пробирки с почвой и без почвы определяют навеску почвы, взятую для анализа. В колбу приливают 3–5 мл концентрированной Н2SО4, прибавляют несколько кристаллов К2SО4 и 1–2 кристаллика СuS04 (1–2 крупинки металлического селена или несколько капель хлорной кислоты или несколько капель перекиси водорода) для ускорения реакции. Колбу укрепляют наклонно при помощи штатива на колбонагревателе или над газовой горелкой в вытяжном шкафу и осторожно нагревают. Реакция окисления органического вещества идет бурно, поэтому первое время необходимо следить за ходом сжигания и предупредить вспучивание почвы уменьшением нагрева и осторожным помешиванием содержимого колбы. Через 30–40 мин. нагрев можно усилить и продолжать окисление до полного обесцвечивания раствора, после чего прекратить нагрев и охладить колбу до комнатной температуры. После охлаждения содержимое колбы Кьельдаля переносят в сосуд для перегонки через воронку, многократно ополаскивая ее водой, которую также переносят в сосуд. Раствор в сосуде должен занимать около 1/4 объема. В приемник приливают из бюретки 20 мл 0,02 н. раствора H2SО4 и прибавляют 2–3 капли индикатора метилрота или смешанного индикатора Гроака. Приемник подставляют под холодильник так, чтобы конец трубки холодильника был погружен в раствор. Затем через воронку осторожно приливают 20–30 мл 40%-ного раствора NaОН или КОН. Закрыв кран воронки, содержимое сосуда осторожно взбалтывают.

Если количество прибавленного КОН достаточно, жидкость в сосуде окрашивается в синий цвет и выпадает осадок гідроокиси меди. При взаимодействии щелочи с (NН4)2SО4 реакция идет по уравнению:

(NH4)2SО4 + 2NaОН = Na2SО4 + 2Н2O + 2NH3.

Образующийся NН3 отгоняют паром в приемник с Н2SО4, для чего нагревают парообразователь и кипятят в нем воду в течение 20–30 мин. Во время перегонки необходимо следить за тем, чтоб, конец отводной трубки холодильника был погружен в 0,02 н. раствор H2SO4 в приемнике. За 5 минут до конца перегонки отводную трубку приподнимают из раствора и перегонку продолжают таким образом, чтобы капли воды из холодильника свободно стекали в приемник. При перегонке выделяющийся NН3 поглощается 0,02 н. раствором Н2SО4 по уравнению 2NH3 + Н2S04 = (NH4)2SO4. По окончании перегонки остаток 0,02 н. раствора Н2SО4, не вступивший в реакцию с NН3, оттитровывают 0,02 н. рас твором NаОН. При применении метилрота титруют до перехода роздвой окраски в желтую, при использовании индикатора Гроака – до изменения красно-фиолетового цвета в зеленый. 1 мл 0,02 н. раствора, затраченный на связывание NН3, соответствует 0,00028 г N.

Количество азота вычисляют по формуле:

х = (а–в) • 00028 • 100 K/с,

где: х – количество азота, % в сухой почве;

а – число миллилитров 0,02 н. раствора Н2S04, взятое для поглощения аммиака;

в – то же, после поглощения аммиака;

100 – коэффициент для пересчета на 100 г почвы;

K – коэффициент для пересчета на сухую почву;

c – навеска почвы, взятая для анализа, г.

5 Анализ водной витяжки

Часть жидкой фазы почвы, находящаяся в свободном состоянии и заполняющая капиллярные и некапиллярные поры в почве, называется почвенным раствором. По составу и концентрации почвенного раствора все почвы можно разделить на две группы – незасоленные и засоленные. В незасоленных почвах концентрация почвенного раствора невелика. В минеральной части раствора преобладают бикарбонаты (в основном кальция), в очень незначительном количестве присутствуют нитраты, сульфаты и фосфаты. Органическая часть раствора состоит из водорастворимых гумусовых кислот и промежуточных продуктов разложения органических остатков. В засоленных почвах концентрация почвенного раствора высокая, а его состав определяется составом засоляющих почву солей. Минеральная часть раствора в этих почвах обычно представлена хлоридами, сульфатами, а также бикарбонатами щелочных и щелочноземельных катионов и карбонатом натрия. В органической части почвенного раствора, которая обычно значительно менше минеральной, преобладают гумусовые кислоты и их соли. Состав растворенных веществ почвенного раствора обусловливает его реакцию.

Кислотность почвенного раствора вызывается присутствием органических кислот и свободной угольной кислоты. Щелочность почвенного раствора обусловлена, главным образом, наличием карбонатов и бикарбонатов щелочноземельных и щелочных оснований, а также щелочных солей гумусовых и кремниевой кислот. Как концентрация, так и состав почвенного раствора имеют большое значение в развитии растений. Химический состав почвенного раствора, его реакцию и концентрацию изучают обачно методом водной вытяжки. Метод водной вытяжки является условным и дает лишь качественное представление о составе почвенного раствора и его концентрации. Чем больше взято воды для приготовления водной вытяжки, тем больше извлекается из почвы веществ, в то время как концентрация водной вытяжки уменьшается. Чем дольше взаимодействует почва с водой, тем больше веществ переходит из почвы в водную вытяжку.

В водной вытяжке определяют:

1) сухой остаток, т. е. общую сумму водорастворимых веществ, дающую косвенное представление о концентрации почвенного раствора;

2) прокаленный остаток, т. е. общую сумму минеральных водорастворимых веществ;

3) щелочность и кислотность;

4) катионы (Са2+ и Мg2+) и анионы (Сl-, SO42- и NO3-); причем количественное определение катионов Са2+ и Мg2+ и анионов С1- и SO42- важно только при анализе засоленных почв, где их содержание значительно.

Приготовление водной вытяжки. На технохимических весах отвешивают в фарфоровой чашке 100 г воздушно-сухой почвы, просеянной через сито с отверстиями диаметром 1 мм. Навеску осторожно через воронку с широкой и короткой трубкой пересыпаютв стеклянную банку с притертой пробкой. В банку приливают 500 мл дистиллированной воды, все содержимое банки встряхивают в течение 3 мин. и медленно фильтруют через плотный складчатый фильтр, перенося на него всю почву. Для фильтрации употребляются воронки диаметром 12–15 см. Первые мутные порции фильтрата переносят обратно на фильтр; фильтрат собирают в колбу вместимостью 500–700 мл. Во время фильтрации записывают скорость фильтрации, цвет и прозрачность вытяжки.

Анализ водной вытяжки необходимо производить тотчас после окончания фильтрации. Определение общей суммы водорастворимых веществ (сухой остаток)

Берут пипеткой или мерной колбочкой 100 мл водной вытяжки, выпаривают на водяной бане в предварительно высушенной и взвешенной на аналитических весах фарфоровой чашечке или тигле. Сухой остаток высушивают в термостате при 105 °С в течение 3 часов и после охлаждения в эксикаторе взвешивают на аналитических весах. По разности массы пустой чашечки и чашечки с сухим остатком определяют массу сухого остатка во взятом объеме вытяжки. Количество сухого остатка в процентах к массе воздушно-сухой почвы вычисляют по формуле:

х = аV/bc,

где: а – масса сухого остатка, г;

V – общее количество воды, взятой для приготовления водной

вытяжки, мл;

100 – коэффициент перевода в проценты;

b – объем вытяжки, взятой на выпаривание, мл;

c – навеска почвы, г.

Водные вытяжки из торфа и лесных подстилок приготавливают при отношении 1 : 20, т. е. берут 25 г воздушно-сухого торфа и 500 мл дистиллированной воды. Определение общей суммы минеральных водорастворимых веществ (прокаленный остаток) Для определения общей суммы минеральных водорастворимых веществ фарфоровую чашечку с высушенным и взвешенным сухим остатком прокаливают в течение 1–2 часов в муфельной печи или на газовой горелке при температуре не выше 600 °С.

После охлаждения в эксикаторе чашечку взвешивают и вновь прокаливают в течение 30 мин., охлаждают и взвешивают. Прокаливание и взвешивание повторяют до установления постоянной массы чашечки. Количество прокаленного остатка вычисляют в процентах к массе воздушно-сухой почвы по формуле для вычисления веса сухого остатка. Разность между количеством сухого и прокаленного остатков дает величину потери при прокаливании, т. е. сумму органических водорастворимых веществ. Определение подвижных соединений фосфора и калия в почве. Общие понятия. Общее количество фосфора в почвах колеблется от 0,01 до 0,2%. Большая часть органических и минеральных соединений фосфора, находящихся в почве, нерастворима в воде и недоступна для растений. В практике сельского хозяйства под названием «подвижные соединения фосфора» понимают те почвенные фосфаты, которые растворяются в воде и слабых кислотах и могут усваиваться растениями. Общее содержание калия в различных почвах колеблется в среднем от 1 до 8% в пересчете на К2О. Количество поглощенного калия составляет от 0,004 до 0,06% (4–60 мг на 100 г), а водорастворимого лишь 0,0001–0,002% (0,1–2 мг на 100 г почвы). Наиболее доступной формой калия являются его водорастворимые соединения и поглощенный (обменный) калий. Поглощенный калий является основным источником калийного питания растения, и содержание его в почве служит показателем степени обеспеченности почвы усвояемым калием. Для определения степени обеспеченности почвы подвижными формами фосфора и калия предложено несколько методов. Выбор метода определяется степенью карбонатности и насыщенности почв основаниями. Определение подвижных форм фосфора и калия по методу А. Т. Кирсанова Принцип метода. Этим методом определяются те подвижные соединения фосфора и калия, которые переходят в раствор при обработке почвы 0,2 н. НСl. Раствор этот извлекает из почвы фосфаты кальция, большую часть фосфатов железа и алюминия, но не затрагивает органических соединений фосфора. Одновременно вытесняется обменный калий и его водорастворимые формы. Метод пригоден для некарбонатных почв.

Фосфор

Ход анализа. На технохимических весах отвешивают 5 г воздушно-сухой почвы, пропущенной через сито с отверстиями 1 мм, помещают в колбу и обрабатывают 25 мл 0,2 н. раствора НСl. Колбу встряхивают в течение 1 мин. и оставляют в покое на 15 мин., после чего содержимое фильтруют через небольшой складчатый фильтр. Фосфор в растворе определяют колориметрически с использованием молибденовокислого аммония, а калий –на пламенном фотометре. Метод определения содержания подвижных соединений фосфора основан на образовании комплексной фосфорномолибденовой кислоты при взаимодействии молибденовокислого аммония с фосфором. Фосфорномолибденовая кислота восстанавливается оловом в солянокислой среде до окислов молибдена, окрашенных в голубой цвет. Из фильтрата берут пипеткой от 3 до 25 мл (в зависимости от предполагаемого содержания фосфора) в мерную колбу вместимостью 50 мл, разбавляют дистиллированной водой до 40–45 мл, прибавляют пипеткой 2 мл 2,5%-ного раствора молибденовокислого аммония, тщательно перемешивают и вносят 3 капли раствора хлористого олова. Содержимое колбы доводят до метки и вновь тщательно перемешивают. Через 5–10 мин. приступают к колориметрированию, предварительно приготовив серию образцовых растворов. Приготовление рабочего образцового раствора Р2О5 0,1917 г КН2РО4 растворяют в мерной колбе вместимостью 1 л в дистиллированной воде, доводя объем до метки. Раствор содер- жит 0,1 мг Р2О5 в 1 мл. Хранят его в темном месте. Из него готовят рабочий раствор: 50 мл раствора пипеткой переносят в мерную колбу вместимостью 500 мл и доводят содержимое колбы до метки дистиллированной водой. Из этого раствора (он содержит 0,01 мг Р2О5 в 1 мл) приготавливают серию образцовых растворов для колориметрирования и построения калибровочного графика. Приготовление серии образцовых растворов для определения фосфора. Для этого из рабочего образцового раствора, содержащего 0,01 мг Р2O5 в 1 мл, в 10 мерных колб вместимостью 100 мл бюреткой наливают следующие количества:

№ колбы 1 2 3 4 5 6 7 8 9 10

Количество образцового раствора

1 2 4 6 8 10 20 30 40 50

Содержание Р2О5 в 100 мл, мг

 

0,01 0,02 0,04 0,06 0,08 0,1 0,2 0,3 0,4 0,5

 

В колбы прибавляют до 90–95 мл дистиллированной воды, 4 мл 2,5%-ного раствора молибденовокислого аммония, 6 капель раствора хлористого олова и аскорбиновую кислоту (в последнем случае растворы значительно дольше сохраняются перед колориметрированием). Тщательно перемешивают, доводят раствор до метки дистиллированной водой и вновь перемешивают. Если окраска испытуемого раствора окажется очень слабой, определение повторяют с бульшим объемом фильтрата. Можно также работать с мерными колбами меньшей вместимости (50 мл). В последнем случае необходимо соответственно уменьшить количество молибденовокислого аммония и хлористого олова в два раза. Если после окрашивания испытуемый раствор дает не чисто синюю, а грязно-зеленую окраску, определение нужно повторить,предварительно восстановив Fе3+ металлическим алюминием и разрушив органическое вещество персульфатом калия (К2S2О8) в слабокислой или нейтральной среде. Количество Р2О5 в миллиграммах на 100 г сухой почвы определяют по калибровочной кривой, а затем проводят расчет по формуле:

Х (мг/100 г) = aV • 100K/ bc,

где: а – содержание Р2О5 в испытуемом растворе, найденное по калибровочной кривой, мг;

V – общий объем фильтрата, мл;

K – коэффициент пересчета на сухую почву;

b – объем фильтрата, взятый для анализа, мл;

с – навеска почвы, г.

 

Калий

Ход определения. В приготовленной для определения фосфора в почве солянокислой вытяжке определяют содержание подвижного калия с помощью пламенного фотометра. По показателю прибора и при помощи калибровочного графика получают содержание К2О на 1 л, а затем для получения результата в мг на 100 г сухой почвы проводят расчет по формуле:

Х (мг/100 г) = а • в/1000,

где: Х – содержание подвижного калия в сухой почве;

а – концентрация калия (мг в 1 л) в испытуемом растворе, най-

денная по калибровочной кривой;

в – объем вытяжки, соответствующий 100 г почвы.

Приготовление образцового раствора К2О 1,583 г КСl растворяют в 1 л дистиллированной воды (лучше это делать в мерной колбе на 1 л). В 1 мл этого раствора содержится1 мг К2О. Далее в мерные колбы емкостью 250 мл берут возрастающее количество основного образцового раствора: 0,5; 1,0; 2,5;5,0; 7,5; 10; 15; 20; 25 мл и доводят до метки 0,2 н. раствором соляной кислоты. В пересчете на 1 л концентрация калия (К2О) в колбах будет соответствовать 2, 4, 10, 20, 30, 40, 60, 80, 100 мг К2О. Проводят пламеннофотометрическое определение и построение калибровочного графика. Методы определения подвижных соединений азота в почве В почве всегда находятся 3 группы соединений азота, различных по степени доступности для растений.

1. Минеральные соединения азота, растворимые в воде (нитриты, нитраты, аммонийные соли) и вытесняемые растворами нейтральных солей (поглощенный аммоний). Все они являются непосредственными источниками питания растений. Их содержание в каждый данный момент в почве очень невелико и составляет только несколько миллиграммов на 1 кг сухой почвы.

2. Легкогидролизуемые органические соединения азота, минерализующиеся в первую очередь с образованием доступных для растений форм азота. Их количество также незначительно и составляет десятки миллиграммов на 1 кг сухой почвы.

3. Негидролизуемые разбавленными растворами минеральных кислот органические соединения азота, трудно поддающиеся минерализации. Они составляют основную часть валового азота почвы. Содержание соединений азота первой и второй групп является показателем обеспеченности почв азотом, доступным для растений. Для определения количества минеральных форм азота почву анализируют для определения содержания поглощенного и водорастворимого аммония и нитратов. Для выяснения способности почв к мобилизации органических соединений азота устанавливают нитрифицирующую способность почв. Резкое возрастание количества нитратов при добавлении сульфата аммония свидетельствует о низкой потенциальной способности почвы к аммонификации, а увеличение содержания нитратов при внесении мела подтверждает необходимость известкования почвы. Возрастание количества аммония и нитратов при внесении люпиновой или гороховой муки свидетельствует о недостаточном количестве легкогидролизуемых органических соединений азота в почве.

Определение аммонийного азота

Общие понятия. Аммонийный азот находится в почве в форме поглощенного (обменного) катиона и в виде водорастворимых солей. Его извлекают обработкой почвы 1 н. раствором КСl и определяют колориметрически. Колориметрическое определение основано на взаимодействии NН4+ с реактивом Несслера, при котором образуется йодистый меркураммоний, окрашенный в желтый цвет:

NH4OH + 2K2HgI4 + 3КОН = NH2Hg2OI + 7KI + ЗН2O.

Для связывания ионов Са2+ и Мg2+, которые также переходят в раствор и мешают определению, к раствору прибавляют сегнетовую соль (Kna • C4H4O6 • H2O).

Ход анализа. Навеску свежей почвы, соответствующую 10–50 г сухой почвы, помещают в коническую колбу вместимостью 250–500 мл и заливают 10-кратным количеством I н. раствора КСl с учетом воды, уже содержащейся в почве. Содержимое колбы взбалтывают 5 мин. и оставляют на ночь. Длительное отстаивание можно заменить часовым взбалтыванием на ротаторе. Затем содержимое колбы фильтруют через складчатый фильтр, предварительно промытый раствором КСl для очистки от аммиака, и, если фильтрат прозрачен и бесцветен, приступают к колориметрическому определению аммонийного иона. Вначале проводят качественную пробу на содержание NН4+ в вытяжке. В пробирку берут 5 мл фильтрата, прибавляют 2 капли сегнетовой соли и 2 капли реактива Несслера. Раствор должен окраситься в чисто желтый цвет. Если окраска становятся желто-бурой или выпадает осадок, витяжку разбавляют и записывают разбавление, после чего повторяют качественную пробу. Подобрав нужную концентрацию вытяжки, берут от 5 до 40 мл ее в мерную колбу вместимостью 50 мл и разбавляют водой до 40 мл, после чего прибавляют 2 мл сегнетовой соли и хорошо перемешивают содержимое колбы. Одновременно гото- вят шкалу образцовых растворов, для чего в мерные колбы вместимостью 50 мл берут пипеткой 1, 5, 10, 15 и 20 мл образцового раствора, разбавляют водой до 40 мл и прибавляют 2 мл раствора сегнетовой соли, хорошо размешивая ее с образцовым раствором. Затем во все колбы прибавляют по 2 мл реактива Несслера, доводять содержимое колб до метки и снова тщательно перемешивают растворы. Через 2–3 мин. колориметрируют испытуемый и образцовые растворы. По градуировочной кривой находят концентрацию аммония, соответствующую измеренному значению оптической плотности, и вычисляют содержание NН4+ в миллиграммах на 100 г сухой почвы по следующей формуле:

 

Х (мг/100 г) = a • V • 100 K ,

bc

где а – содержание NH4+ в 50 мл, найденное по градуировочной кривой, мг;

V – общее количество 1 н. раствора КСl, взятое для приготовления вытяжки, мл;

b – объем испытуемого раствора, взятый для определения, мл;

с – навеска почвы, г;

100 – коэффициент для пересчета на 100 г почвы;

K – коэффициент пересчета на сухую почву.

Приготовление образцового раствора NH4+

Растворяют в воде 0,7405 г химически чистого NН4Сl и доводят

до 1 л; 10 мл этого раствора разводят водой до 500 мл. Этот образцовый раствор содержит 0,005 NH4+ (или 0,0039 мг N) в 1 мл.

 

6. Определение нитратного азота

Принцип метода. Нитраты присутствуют в почве в виде водорастворимых солей. Для извлечения их применяют водные или солевые вытяжки. Нитраты в почвенных вытяжках определяют колориметрическим или объемным методами. Колориметрический метод с использованием дисульфофеноловой кислоты был предложен Грандваль-Ляжу. Метод основан на взаимодействии нитратов с дисульфофеноловой кислотой. При подщелачивании смеси раствор приобретает желтую окраску, по интенсивности которой судят о содержании нитратов в почве. Метод позволяет определять не менее 0,02 мг NO3 в 100 мл раствора.

Ход анализа. Навеску 20 г воздушно-сухой почвы помещают в колбу емкостью 250 мл, туда же наливают 100 мл дистиллированной воды. Содержимое колбы взбалтывают 3 минуты и затем фильтруют через плотный складчатый фильтр. Пипеткой берут 20–50 мл фильтрата в зависимости от предполагаемого содержания в почве нитратов, помещают в небольшую фарфоровую чашку и на водяной бане выпаривают досуха. В охлажденную чашку по каплям из пипетки добавляют 1 мл дисульфофеноловой кислоты, стараясь смочить находящийся на стенке и дне чашки сухой остаток. Остаток тщательно растирают с кислотой оплавленным концом стеклянной палочки. Чашку оставляют в покое на 10 минут. Затем в нее добавляют пипеткой 25 мл дистиллированной воды, смесь перемешивают стеклянной палочкой и доводят до щелочной реакции, прибавляя раствор едкой щелочи (проба с лакмусовой бумажкой). При этом в присутствии нитратов жидкость окрашивается в желтый цвет. Жидкость должна приобрести устойчивую желтую окраску, а лакмусовая бумажка посинеть, тогда прекращают добавление щелочи. Окрашенный раствор с помощью воронки переносят в мерную колбу на 100 мл. Чашку и палочку обмывают водой из промывалки. Эту воду добавляют в мерную колбу. Колбу закрывают пробкой и хорошо перемешивают. Определяют оптическую плотность раствора на фотоколориметре. По калибровочной кривой находят содержание нитратного азота в испытуемом растворе. Если испытуемый раствор окрашен более интенсивно, чем образцовые растворы, его разбавляют в несколько раз водой, повторяют выпаривание на водяной бане и весь вышеуказанный порядок определения.

Расчет результата анализа содержания нитратного азота (Х):

Х (мг/100 г) = a • V • 100 K,

где а – содержание NO3 в 50 мл, найденное по градуировочной

кривой, мг;

V – общее количество воды, взятое для приготовления вытяж-

ки, мл;

b – объем испытуемого раствора, взятый для определения, мл;

с – навеска почвы, г;

100 – коэффициент для пересчета на 100 г почвы;

K – коэффициент пересчета на сухую почву.

Приготовление образцового раствора нитрата. Запасной раствор. Для приготовления используют х.ч. KNO3. На аналитическихвесах отвешивают 0,722 г соли, переносят в мерную колбу емкостью 1 л. Растворяют в дистиллированной воде, объем доводят до 1 л. В 1 мл раствора содержит 0,01 мг N-NO3. Рабочий раствор готовят разведением запасного раствора в 50 раз водой. Рабочий раствор содержит 0,002 мг N-NO3 в 1 мл. Его используют для приготовления образцовых растворов.

7. Определение содержания в почве гумуса

Общие понятия. Многочисленными исследованиями доказано, что в условиях городской среды формируется специфический гумус, свойства которого отличны от гумуса почв ненарушенных экосистем. В этой связи необходим анализ гумуса почв, находящихся в условиях урбанизации.Как известно, в состав гумуса входят 3 группы органическихсоединений:

1) вещества исходных органических остатков (белки,углеводы, лигнин, жиры и т. д.),

2) промежуточные продукты их превращения (аминокислоты, оксикислоты, фенолы, моносахари-

ды и т. д.) и

3) гумусовые вещества. Последние составляют главную и специфическую часть гумуса.

Все методы изучения гумуса почвы можно разбить на 3 группы:

1) методы определения общего количества органического вещества в почве,

2) методы определения отдельных элементов, входящих в состав гумуса,

3) методы определения отдельных групп гумусовых веществ.

Прямых методов определения общего количества гумуса в почве нет. Косвенным приемом определения общего количества гумуса является вычисление содержания его по количеству углерода в почве. Предполагая, что среднее содержание углерода в гумусе равно 58%, общее количество его в почве можно вычислить путем умножения процентного содержания углерода в почве на коэффи- циент 1,724. Этот коэффициент является условным и дает лиш приблизительное представление об общем количестве гумуса, приближающемся к истинному лишь в почвах, богатых гуминовыми кислотами. Из отдельных элементов, входящих в состав органического вещества почвы, можно определить C, N и Н.

Все методы определения гумуса по углероду так же делятся на прямые и косвенные. Прямые методы основаны на учете СО2, выделяющегося при сжигании органического вещества почвы путем прокаливания (сухое сжигание) или окисления гумуса смесью хромовой и серной кислот (мокрое сжигание). Прямые методы наиболее точны, но требуют для анализа много времени. Из прямих методов определения гумуса мокрым сжиганием наиболее распространенным является метод Кнопа.


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой


<== предыдущая лекция | следующая лекция ==>
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ. 1 Халимов, А.Г. Работоспособность сварного оборудования из жаропрочных хромистых сталей [Текст]/ А.Г | ВВЕДЕНИЕ.

Дата добавления: 2015-09-07; просмотров: 515. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.127 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7